Skip to main content

Smoothelins: One Gene, Two Proteins, Three Muscle Cell Types .... so Far

  • Chapter
Cardiovascular Specific Gene Expression

Abstract

Smooth muscle cells (SMCs) are found in a large variety of tissues. For years, SMCs have been divided into visceral and vascular SMCs, and into contractile and proliferative/ synthetic phenotypes. At present it is clear that such divisions are too simple. Vascular SMCs are in fact a collection of cells from various embryonic origins, with variations in morphology and gene expression patterns and with different functions [1,2,3,4,5]. Differences between SMC variants and modulations in phenotype can be monitored by marker proteins [1,6]. However, marker proteins for the subtle differences in SMC populations are hardly available. There are general markers for SMC, such as a-smooth muscle actin and calponin, but only a few proteins, such as smooth muscle myosin heavy chain and caldesmon, have been brought forward to discriminate between variants of SMCs [1,6,7,8,9]. Recently, characteristics of SM22a have been described that make this gene a promising candidate [3,10]. Marker proteins are not only important as molecules that allow a better definition of SMC variants, but also because they may provide promoter sequences that can be used as instruments to manipulate gene expression in SMCs and to ‘hunt down’ transcription factors involved in SMC-specific gene regulation. Gene therapy for hereditary or other diseases affecting particular smooth muscle tissues, requires promoters that are fine-tuned to the expression in one particular SMC variant and knowledge of transcription factors interacting with SMC-specific promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75: 487–517.

    PubMed  CAS  Google Scholar 

  2. Gabbiani G, Schmid E, Winter S, Chaponnier C, Chastonay de C, Vandekerckhove J, Weber K, Franke WW. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci USA 1981; 78: 298–302.

    Article  PubMed  CAS  Google Scholar 

  3. Moessler H, Mericskay M, Li Z, Nagi S, Paulin D, Small JV. The SM22 promotor directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 1996; 122: 2415–25.

    PubMed  CAS  Google Scholar 

  4. Nanaev AK, Shirinsky VP, Birukov KG. Immunofluorescent study of heterogeneity in smooth muscle cells of human fetal vessels using antibodies to myosin, desmin, and vimentin. Cell Tissue Res 1991; 266: 535–40.

    Article  PubMed  CAS  Google Scholar 

  5. Campbell GR, Chamley-Campbell JH. Smooth muscle phenotypic modulation: Role in atherogenesis. Med Hypothesis 1981; 7: 729–35.

    Article  CAS  Google Scholar 

  6. Campbell JH, Kocher O, Skalli O, Gabbiani G, Campbell GR. Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells: correlation with cell density and proliferative state. Atherosclerosis 1989; 9: 633–43.

    CAS  Google Scholar 

  7. Glukhova MA, Kabakov AE, Belkin AM, Frid MG, Ornatsky OI, Zhidkova NI, Koteliansky VE. Meta-vinculin distribution in adult human tissues and cultured cells. FEBS Lett 1986; 207: 139–41.

    Article  PubMed  CAS  Google Scholar 

  8. Haeberle JR, Hathaway DR, Smith CL. Caldesmon content of mammalian smooth muscles. J Muscle Res Cell Motil 1992; 13: 81–89.

    Article  PubMed  CAS  Google Scholar 

  9. Miano J, Cserjesi P, LigonP, Perisamy M, Olson EN. Smooth muscle myosin heavy chain marks exclusively the smooth muscle lineage during mouse embryogenesis. Circ Res 1994; 75: 803–12.

    Article  PubMed  CAS  Google Scholar 

  10. Li L, Miano JM, Mercer B, Olson E. Expression of the SM22a promotor in transgenic mice provides evidence for distinct transcriptional regulation programs in vascular and visceral smooth muscle cells. J Cell Biol 1996; 132: 849–59.

    Article  PubMed  CAS  Google Scholar 

  11. Van der Loop FTL, Schaart G, Timmer EDJ, Ramaekers FCS, Van Eys GJJM. Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 1996; 134: 401–11.

    Article  PubMed  Google Scholar 

  12. Van der Loop FTL, Gabbiani G, Kohnen G, Ramaekers FCS, Van Eys GJJM. Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscl Thromb Vasc Biol 1996; 1: 665–71.

    Google Scholar 

  13. Wehrens XHT, Mies B, Gimona M, Ramaekers FCS, Van Eys GJJM, Small JV. Localization of smoothelin in avian smooth muscle and identification of a vascular-specific isoform. FEBS Lett 1997; 405: 315–20.

    Article  PubMed  CAS  Google Scholar 

  14. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 1976; 98: 367–81.

    Article  PubMed  CAS  Google Scholar 

  15. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 1981; 23: 175–82.

    Article  PubMed  CAS  Google Scholar 

  16. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–97.

    Article  PubMed  Google Scholar 

  17. Chu DTW, Klymkowsky MW. Experimental analysis of cytoskeletal function in early Xenopus laevis embryos. Development 1987; 8: 140–42.

    Google Scholar 

  18. Ramaekers FCS, Moesker O, Huijsmans A, Schaart G, Westerhof G, Wagenaar SjSc, Herman CJ, Vooijs GP. Intermediate filament proteins in the study of tumor heterogeneity: an in-depth study of tumors of the urinary and respiratory tracts. Ann NY Acad Sci 1985; 455: 614–34.

    Article  PubMed  CAS  Google Scholar 

  19. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillesen D, Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986; 103: 2787–96.

    Article  PubMed  CAS  Google Scholar 

  20. Auffray C, Rougeon F. Purification of mouse immunoglobulin heavy chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem 1980; 107: 393–414.

    Google Scholar 

  21. Aviv A, Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose. Proc Natl Acad Sci USA 1972; 69: 140812.

    Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. Cold Spring Harbor, New York: 1989 Cold Spring Harbor Laboratory Press.

    Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403–10.

    PubMed  CAS  Google Scholar 

  24. Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232: 584–99.

    Article  PubMed  CAS  Google Scholar 

  25. Rost B, Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 1994; 19: 55–77.

    Article  PubMed  CAS  Google Scholar 

  26. Geourjon C, Deleage G. SOPMA: A self optimised prediction method for protein secondairy structure prediction. Prot Eng 1994; 7: 157–64.

    Article  CAS  Google Scholar 

  27. Geourjon C, Deleage G. SOPMA: Significant improvements in protein secondairy structure prediction by prediction from multiple alignments. Comput Aplic Biosci 1994; 11: 681–84.

    Google Scholar 

  28. Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA. Cloning a single stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 1980; 143: 161–78.

    Article  PubMed  CAS  Google Scholar 

  29. Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci USA 1984; 81: 1991–95.

    Article  PubMed  CAS  Google Scholar 

  30. Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132: 6–12.

    Article  PubMed  CAS  Google Scholar 

  31. Pless DD, Lennarz WJ. Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 1977; 74: 134–38.

    Article  PubMed  CAS  Google Scholar 

  32. Engelen JJM, Esterling LE, Albrechts JCM, Detera-Wadleigh SD, Van Eys GJJM. Assignment of the human gene for smoothelin (SMTN) to chromosome 22q12 by fluorescence in situ hybridization and radiation hybrid mapping. Genomics 1997; 43: 245–47.

    Article  PubMed  CAS  Google Scholar 

  33. Babai F, Musevi-Aghdam J, Schurch W, Royal A, Gabbiani G. Coexpression of alphasarcomeric, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos. Differentiation 1989; 44: 132–42.

    Article  Google Scholar 

  34. Gunning P, Gordon M, Wade R, Gahlmann R, Lin CS, Hardeman E. Differential control of tropomyosin mRNA levels during myogenesis suggests the existence of an isoform competition-autoregulation compensation control mechanism. Dev Biol 1990; 138: 443–53.

    Article  PubMed  CAS  Google Scholar 

  35. McHugh KM, Crawford K, Lessard JL. A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol 1991; 148: 44258.

    Article  Google Scholar 

  36. Olson EN. MyoD family: A paradigm for development? Genes Dev 1990; 4: 1454–61.

    Article  PubMed  CAS  Google Scholar 

  37. Li L, Miano JM, Cserjesi P, Olson EN. SM22a, a marker of adult smooth muscle, is expressed in multiple myogenic lineage during embryogenesis. Circ Res 1995; 78: 188–95.

    Article  Google Scholar 

  38. Frid MG, Shekhonin BV, Koteliansky VE, Glukhova MA. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev Biol 1992; 153: 185–93.

    Article  PubMed  CAS  Google Scholar 

  39. Nagai R, Kuro-OM, Babij P, Periassamy M. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem 1989; 264: 9734–37.

    PubMed  CAS  Google Scholar 

  40. Duband JL, Gimona M, Scatena S, Small JV. Calponin and SM22 as differentiation markers of smooth muscle markers: Spatiotemporal distribution during avian embryonic development. Differentiation 1993; 55: 1–11.

    Google Scholar 

  41. Van Eys GJJM, Voller MCW, Timmer EDJ, Wehrens XHT, Small JV, Schalken JA, Ramaekers FCS, Van der Loop FTL. Smoothelin expression characteristics: development of a smooth muscle cell in vitro system and identification of a vascular variant. Cell Struct Funct1997; 22: 65–72.

    Google Scholar 

  42. Dhermy D. The spectrin super-family. Biol Cell 1991; 71: 249–54.

    PubMed  CAS  Google Scholar 

  43. Karinch AM, Zimmer WE, Goodman SR. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J Biol Chem 1990; 265: 11833–40.

    PubMed  CAS  Google Scholar 

  44. Lees-Miller JP, Heeley DH, Smillie LB. An abundant and novel protein of 22 kDa (SM22) is widely distributed in smooth muscle. Biochem J 1987; 244: 705–09.

    PubMed  CAS  Google Scholar 

  45. Takahashi K, Hiwada K, Kokubu T. Vascular smooth muscle calponin: a novel T-like protein. Hypertension 1988; 11: 620–26.

    Article  PubMed  CAS  Google Scholar 

  46. Borrione AC, Zanellato AMC, Giurato L, Scannapieco G, Pauletto P, Sartore P. Non-muscle and smooth muscle myosin isoforms in bovine endothelial cells. Exp Cell Res 1990; 190: 1–10.

    Article  PubMed  CAS  Google Scholar 

  47. Li L, Liu Z, Mercer B, Overbeek P, Olson EN. Evidence for serum response factor-mediated regulatory networks governing SM22a transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol 1997; 187: 311–21.

    Article  PubMed  CAS  Google Scholar 

  48. Takeuchi K, Takahashi K, Abe M, Nishida W, Hiwada K, Nabeya T, Maruyama K. Co-localization of immunoreactive forms of calponin with actin cytoskeleton in platelets, fibroblasts and smooth muscle. J Biochem 1991; 109: 311–16.

    PubMed  CAS  Google Scholar 

  49. Bochaton-Piallat M-L, Ropraz P, Gabbiani G, Santeusanio G, Palmeiri G, Schiaroli S, Spagnoli LG. Actin isoforms and intermediate filament protein expression in human developing skeletal muscle. BAM 1992; 2: 83–87.

    Google Scholar 

  50. De Jong F, Geerts WJC, Lamers WH, Los JA, Moorman AHM. Isomyosin expression during formation of the tubular chicken heart: a three-dimensional immunohistochemical analysis. Anat Rec 1990; 226: 213–27.

    Article  PubMed  Google Scholar 

  51. Van der Loop FTL, Van Eys GJJM, Schaart G, Ramaekers FCS. Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organization in relation to cytoskeletal constituents. J Muscle Res Cell Mot 1996; 17: 23–36.

    Article  Google Scholar 

  52. Chen Y-F, Durand J, Claycomb WC. Hypoxia stimulates atrial natriuretic peptide gene expression in cultured atrial cardiocytes. Hypertension 1997; 29: 75–82.

    Article  PubMed  CAS  Google Scholar 

  53. Schmedtje JF, Liu WL, Thompson TH, Runge MS. Evidence of hypoxia-inducible factor in vascular endothelial and smooth muscle cells. Biochem Biophys Res Comm. 1996; 220: 68791.

    Article  Google Scholar 

  54. Ausma J, Schaart G, Thoné F, Shivalkar B, Flameng W, Depré C, Vanoverschelde J-L, Ramaekers FCS, Borgers M. Chronic ischemic viable myocardium in man: Aspects of dedifferentiation. Cardiovasc Pathol 1995; 4: 29–37.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Eys, G.J.J.M. et al. (1999). Smoothelins: One Gene, Two Proteins, Three Muscle Cell Types .... so Far. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics