Skip to main content

Mice Deficient in Muscle LIM Protein (MLP) Reveal a Pathway to Dilated Cardiomyopathy and Heart Failure

  • Chapter
  • 70 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

Abstract

The striated muscle specific Lin 12, Islet 1, Mec 3 (LIM)-only protein MLP is a conserved positive regulator of myogenic differentiation associated with the actin-based cytoskeleton and the cell nucleus [1,2]. In the heart, MLP is expressed at high levels in atrial and ventricular myocytes during development and in the adult [1]. MLP consists of two LIM double-zinc fingers linked by a spacer of 58 residues. The LIM motif is a protein binding interface found in a diverse group of proteins [3]. MLP may promote myogenic differentiation by both acting as a molecular adapter to modulate protein assembly along the actin-based cytoskeleton, and by promoting muscle specific gene expression as a transcriptional co-factor. This hypothesis is supported by the demonstration that the second LIM motif of MLP can specifically target interacting proteins to the actin-based cytoskeleton [2], and the first LIM motif mediates the interaction of MLP with muscle-specific transcription factors [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber S, Haider G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 1994; 79: 221–31.

    Article  PubMed  CAS  Google Scholar 

  2. Arber S, Carom, P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Devel 1996; 10: 289–300.

    Article  PubMed  CAS  Google Scholar 

  3. Dawid IB, Toyama R, Taira M. LIM domain proteins. C R Acad Sci 1995; 318: 295–306.

    CAS  Google Scholar 

  4. Kong Y, Flick MJ, Kudla AJ, Konieczny SF. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 1997; 17: 4750–60.

    PubMed  CAS  Google Scholar 

  5. Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: Molecular studies of an adaptive physiologic response. FASEB J 1991; 5: 3037–46.

    PubMed  CAS  Google Scholar 

  6. Yamazaki T, Komuro I, Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol. 1995; 27: 133–40.

    Article  PubMed  CAS  Google Scholar 

  7. Keating MT, Sanguinetti MC. Molecular genetic insights into cardiovascular disease. Science 1996; 272: 681–85.

    Article  PubMed  CAS  Google Scholar 

  8. Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 1994; 124: 401–04.

    Article  PubMed  CAS  Google Scholar 

  9. Arber S, Hunter JJ, Ross JJr, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997; 88: 393403.

    Google Scholar 

  10. Baumeister A, Arber S, Caroni P. Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis. J Cell Biol 1997; 139: 1231–42.

    Article  PubMed  CAS  Google Scholar 

  11. Schaper J, Hein S. The structural correlate of reduced cardiac function in human dilated cardiomyopathy. Heart Failure 1993; 9: 95–115.

    Google Scholar 

  12. Olsen EGJ, Trotter SE. Pathology of dilated cardiomyopathy. In: Goodwin JF, Olsen EGJ, editors. Cardiomyopathies, realizations and expectations. Berlin: Springer Verlag, 1993: 1927.

    Google Scholar 

  13. Goncharova EJ, Kam Z, Geiger B. The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development 1992; 114: 173–83.

    PubMed  CAS  Google Scholar 

  14. Kubalak SW, Doevendans PA, Rockman HA, et al. Molecular analysis of cardiac muscle diseases via mouse genetics. In: Adolph KW, editor. Methods in molecular genetics. San Diego: Academic Press, 1996: 470–87.

    Chapter  Google Scholar 

  15. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med 1994; 331: 1564–75.

    Article  PubMed  CAS  Google Scholar 

  16. Kasper EK, Agema WRP, Hutchins GM, et al. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol 1994; 23: 586–90.

    Article  PubMed  CAS  Google Scholar 

  17. Bristow MR, Gisburg R, Minobe W, et al. Decreased catecholamine sensitivity and betaadrenergic receptor density in failing human hearts. New Engl J Med 1982; 307: 205–11.

    Article  PubMed  CAS  Google Scholar 

  18. Peralta Soler A, Knudsen KA. N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. Dev Biol 1994; 162: 9–17.

    Article  Google Scholar 

  19. Hunter JJ, Tanaka N, Rockman HA, Ross JJr, Chien KR. Ventricular expression of a MLC2v-Ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995; 270: 23173–78.

    Article  PubMed  CAS  Google Scholar 

  20. Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the betaadrenergic receptor kinase or a beta ARK inhibitor. Science 1995; 268: 1350–53.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou MD, Sucov HM, Evans RM, Chien KR. Retinoid dependent pathways suppress myocardial cell hypertrophy. Proc Natl Acad Sci USA 1995; 92: 7391–95.

    Article  PubMed  CAS  Google Scholar 

  22. Chien KR. Genes and physiology: Molecular physiology in genetically engineered animals. J Clin Invest 1996; 97: 901–09.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caroni, P. (1999). Mice Deficient in Muscle LIM Protein (MLP) Reveal a Pathway to Dilated Cardiomyopathy and Heart Failure. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics