Skip to main content

Receptor-Dependent Cell Specific Delivery of Antisense Oligonucleotides

  • Chapter
Cardiovascular Specific Gene Expression

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

Abstract

Oligodeoxynucleotides (ODNs) have been shown to inhibit gene expression at various levels both in vitro and in vivo [1–4]. In vivo, the efficacy of ODN-induced regulation of genes in specific cell types may be suboptimal due to poor accumulation of ODNs in these cells. In addition, untimely elimination of ODNs via renal clearance, degradation and scavenger receptor-mediated uptake [6] may further impair their therapeutic activity. These hurdles can be at least partly overcome by targeted delivery of the ODNs to the desired site of action. A number of approaches have been suggested to facilitate the entry of polyanionic ODNs into the aimed target cell [7–12]. Neutral and cationic liposomes are considered to be attractive ODN carriers since they markedly enhance cellular uptake under in vitro conditions. Like native ODNs, however, liposomally formulated ODNs are mainly captured by cells of the reticulo-endothelial system in lungs, spleen and liver [13–15], as a result of which the ODN concentration in the target cell will be suboptimal. After local delivery of ODNs encapsulated in virus capsid-coated liposomes, Morishita et al. [16] could enhance ODN uptake by vascular endothelial cells leading to cell-specific antisense effects. Nevertheless, this approach is not feasible for specific delivery of ODNs to most other cell types like the parenchymal liver cell (PC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents -is the bullet really magical. Science 1993; 261: 1004–11.

    Article  PubMed  CAS  Google Scholar 

  2. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides Nature 1994; 372: 33335.

    Google Scholar 

  3. Milligan JF, Matteucci MD, Martin JC. Current concepts in antisense drug design J Med Chem 1993; 36: 1923–37.

    CAS  Google Scholar 

  4. Szymkowski DE. Antisense Drug Discov Today 1996; 1: 415–28.

    Article  CAS  Google Scholar 

  5. Wagner RW, Flanagan WM. Antisense technology and prospects for therapy of viral infections and cancer. Mol Med Today 1997; 3: 31–38.

    Article  PubMed  CAS  Google Scholar 

  6. Biessen EAL, Vietsch H, Kuiper J, Bijsterbosch MK, van Berke] ThJH. Liver uptake of phosphodiester oligonucleotides is mediated by scavenger receptors Mol Pharmacol 1998; 53: 1–8.

    Google Scholar 

  7. Feigner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofectin, a highly specific lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1993; 84: 7413–17.

    Article  Google Scholar 

  8. Leventis R, Silvius JR. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Bioch Biophys Acta 1990; 1023: 124–32.

    Article  CAS  Google Scholar 

  9. Bennett CF, Chiang MY, Chan H, Shoemaker JE, Mirabelli CK. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharm 1992; 41: 1023–33.

    CAS  Google Scholar 

  10. Tari AM, Tucker SD, Deisseroth A, Lopez-Berestein G. Liposomal delivery of methylphosphonate antisense oligodeoxynucleotides in chronic myelogenous leukemia Blood 1994; 80: 601–607.

    Google Scholar 

  11. Lewis JG, Lin KY, Kothavale A, Flanagan WM, Matteucci MD, DePrince RB, Mook RA, Hendren RW, Wagner RW. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci USA 1996; 93: 3176–81.

    Article  PubMed  CAS  Google Scholar 

  12. Crook ST. Delivery of oligonucleotides and polynucleotides J Drug Targeting 1995; 3: 185–90.

    Article  Google Scholar 

  13. Sands H, Gorey-Feret LJ, Cocazza AJ, Hobbs FW, Chidester D, Trainer GL. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. Mol Pharmacol 1994; 45: 932–43.

    PubMed  CAS  Google Scholar 

  14. Inagaki M, Togawa K, Can BI, Ghosh K, Cohen JS. Antisense oligonucleotides: inhibition of liver cell proliferation and in vivo disposition. Transpl Proc 1994; 24: 2971–72.

    Google Scholar 

  15. Frese J, Wu CH, Wu GY. Targeting of genes to the liver with glycoprotein carriers. Adv Drug Deliver Rev 1994; 14: 137–52.

    Article  CAS  Google Scholar 

  16. Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. Pharmacokinetics of antisense oligodeoxyribonucleotides (cyclin B1 and CDC 2 kinase) in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ-liposome delivery. Gene 1994; 149: 13–19.

    Article  PubMed  CAS  Google Scholar 

  17. Morishita R, Higaku J, Kida I, Aoki M, Moriguchi A, Lawn R, Kaneda Y, Ogihara T. Ribozyme oligonucleotides against apoliprotein(a) gene cleavages selectively apolipoprotein(a) but not plasminogen, gene: novel gene therapy strategy for atherosclerosis. Circulation 1996; 94: 1–39.

    Article  Google Scholar 

  18. Sugano M, Makino N. Changes in plasma lipoprotein cholesterol levels by antisense oligonucleotides against CETP in cholesterol-fed rabbits. J Biol Chem 1996; 271: 19080–83.

    Article  PubMed  CAS  Google Scholar 

  19. Mizutani T, Kato N, Hirota M, Sugiyama K, Murakami A, Shimotohno K. Inhibition of hepatitis C virus replication by antisense oligonucleotide in culture cells. Biochem Biophys Res Comm 1995; 212: 906–11.

    Article  PubMed  CAS  Google Scholar 

  20. Wakita T, Wands JR. Specific inhibition of hepatitis C virus expression by antisense oligodeoxynucleotides. J Biol Chem 1994; 269: 14205–10.

    PubMed  CAS  Google Scholar 

  21. Nakazono K, Ito Y, Wu CH, Wu GY. Inhibition of hepatitis B virus replication by targeted pretreatment of complexed antisense DNA in vitro. Hepatology 1996; 23: 1297–303.

    PubMed  CAS  Google Scholar 

  22. Wu GY, Wu CH. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J Biol Chem 1992; 267: 12436–39.

    PubMed  CAS  Google Scholar 

  23. Lu XM, Fischman AJ, Jyawook SL, Hendricks K, Tompkins RG, Yarmusch ML. Antisense delivery in vivo: liver targeting by receptor-mediated uptake. J Nucl Med 1994; 35: 269–75.

    PubMed  CAS  Google Scholar 

  24. Bunnell BA, Askari, FA, Wilson, JM. Targeted delivery of antisense oligonucleotides by molecular conjugates Somatic Cell Molecular Genetics 1992; 18: 559–59.

    Article  CAS  Google Scholar 

  25. Reinis M, Damkova M, Korec E. Receptor-mediated transport of oligodeoxynucleotides into hepatic cells. J Virol Methods 1993; 42: 99–106.

    Article  PubMed  CAS  Google Scholar 

  26. Ashwell GG, Harford J. Carbohydrate-specific receptors of the liver Ann Rev Biochem 1982; 51: 531–54.

    Article  CAS  Google Scholar 

  27. Hangeland JJ, Levis JT, Lee YC, Ts’o POP. Cell-type specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-Ga1NAc)3. Bioconjugate Chem 1995; 6: 695–701.

    Article  CAS  Google Scholar 

  28. Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts’o POP, Frost JJ. Tissue distribution and metabolism of [32P]-labeled ODN methylphosphonate-neoglycopeptide conjugate, [YEE-(ahGALNAc)3]-SMC-AET-pUm-pT7, in the mouse. Antisense Nucl Acid Drug Dev 1997; 7: 14149.

    Article  Google Scholar 

  29. Pearson AM, Rich A, Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem 1993; 268: 3546–54.

    PubMed  CAS  Google Scholar 

  30. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RW. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987; 330: 132–37.

    Article  PubMed  CAS  Google Scholar 

  31. Biessen EAL, Bakkeren HF, Beuting DM, Kuiper J, van Berkel ThJC. Recognition of both fucose-and galactose-exposing particles by the hepatic fucose receptor depends on the particle size. Biochem J 1994; 299: 291–96.

    PubMed  CAS  Google Scholar 

  32. Sambrook J, Frits EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2“d ed., Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  33. Biessen EAL, Beuting DM, Roelen HCPF, van de Marel GA, van Boom JH, van Berkel ThJC. Synthesis of cluster galactosides with high affinity for the hepatic asialoglycoprotein receptor. J Med Chem 1995; 38: 1446–52.

    Article  Google Scholar 

  34. van Berkel ThJC, De Rijke YB, Kruijt JK. Differrent fate in vivo of oxidatively modified low-density lipoprotein in rats. J Biol Chem 1991; 266: 2282–89.

    Google Scholar 

  35. Biessen EAL, Norder JA, Horn AS, Robillard GT. Evidence for the existence of at least two different binding sites for 5HT-reuptake inhibitors within the 5HT-reuptake system from human blood platelets. BiochemPharm 1988; 37: 3959–66.

    Article  PubMed  CAS  Google Scholar 

  36. Oberhauser B, Wagner E. Effective incorporation of 2’-0-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Res 1992; 20: 533–538.

    Article  PubMed  CAS  Google Scholar 

  37. Biessen EAL, Beuting DM, Vietsch H, Bijsterbosch MK, van Berkel ThJC. Specific targeting of the antiviral drug 5-iodo-2’deoxyuridine to the parenchymal liver cell using lactosylated poly-L-lysine. J Hepatology 1994; 21: 806–15.

    Article  CAS  Google Scholar 

  38. Bonfils E, Dupiereux C, Midoux P, Thuong NT, Monsigny M, Roche AC. Drug targeting: synthesis and endocytosis of oligonucleotide-neoglycoprotein conjugates. Nucleic Acids Res 1992; 20: 4621–29.

    Article  PubMed  CAS  Google Scholar 

  39. Chiu M, Tamura T, Wadhwa MS, Rice KG. In vivo targeting function of N-linked oligosaccharides with terminating galactose and N-acetylgalactosamine residues. J Biol Chem 1994; 269: 16195–202.

    PubMed  CAS  Google Scholar 

  40. Haensler J, Szoka FC. Synthesis and characterization of a trigalactosylated bisacridine compound to target DNA to hepatocytes. Bioconjugate Chem 1993; 4: 85–93.

    Article  CAS  Google Scholar 

  41. Merwin JR, Noell GS, Thomas WC, Chion HC, De Rome ME, McKee TD, Findeis MA. Targeted delivery of DNA using YEE(Ga1NAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor. Bioconjugate Chem 1994; 5: 612–20.

    Article  CAS  Google Scholar 

  42. Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetraantennary galactose ligand. Bioconjugate Chem 1992; 3: 533–39.

    Article  CAS  Google Scholar 

  43. Lee RT, Lee YC. Preparation of cluster glycosides and Ga1NAc that have sub-nanomolar binding affinity toward mammalian hepatic Gal/Ga1NAc-specific receptors. Glycoconjugate J 1987; 4: 317–28.

    Article  CAS  Google Scholar 

  44. Bijsterbosch MK, Manoharan M, Rump ET, de Vrueh RLA, van Veghel R, Tivel KL, Biessen EAL, Bennett CF, Cook PD, van Berkel ThJC. In vivo fate of phosphorothioate antisense oligonucleotides: Predominant uptake by scavenger receptors on endothelial cells Nucl Acids Res 1997; 25: 3290–96.

    Article  CAS  Google Scholar 

  45. Rifai A, Brysch W, Fadden K, Clark J, Slingensiepen KH. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am J Pathol 1996; 149: 717–25.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biessen, E.A.L., van Berkel, T.J.C. (1999). Receptor-Dependent Cell Specific Delivery of Antisense Oligonucleotides. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics