Skip to main content

Crosstalk between the Estrogen Receptor and the Insulin-Like Growth Factor (IGF-1) Receptor. Implications for Cardiac Disease

  • Chapter
Cardiovascular Specific Gene Expression

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

  • 69 Accesses

Abstract

There are significant gender-based differences in cardiac diseases such as cardiac hypertrophy and hypertensive heart disease [1–3]. As the incidence of cardiac disease in women increases after the menopause [1], it has been postulated that estrogen plays a role in the morbidity of heart disease. The mechanisms how estrogen affects this process is currently under investigation [4,5]. Recent findings have demonstrated that estrogen exerts a large array of non-genomic and genomic effects on the myocardium [4–7]. In this context, we have previously shown that cardiac myocytes and cardiac fibroblasts contain functional estrogen receptors (ER) which activate a subset of cardiac target genes i.e connexin 43 [4]. The ER belongs to a class of steroid hormone receptor which are activated upon ligand binding, however recent observations demonstrate that the ER is also activated through phosphorylation-dependent signaling pathways [8,9]. These signaling pathways are shared with a variety of different growth factors i.e. the insulin-like growth factor (IGF-1). Growth factors like IGF-1 activate intracytoplasmic signal transduction cascades through binding of specific plasma-membrane bound receptor-tyrosine kinases [10]. The level of IGF-1 has been associated with cardiac disease i.e. hypertrophic cardiomyopathy in human patients has been linked with overexpression of IGF-1 in cardiac tissue [11]. Furthermore, the specific overexpression of the IGF-1 cDNA in mice leads to cardiac hypertrophy and reveals gender-based differences [10]. Interestingly, IGF-1 has also been shown to activate the ER in tumor cell lines like human breast cancer cells [12]. Therefore, we hypothesized that the signaling pathway of IGF-1 and estrogen might also interact in myogenic growth and differentiation and that this interaction may well play a role in the pathogenesis of cardiac disease. To further elucidate these mechanisms we investigated the expression of ERs and the influence of IGF-1 on ER activation in an estrogen-responsive myogenic cell model (L6 rat skeletal myoblasts) [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus R, Krause L, Weder AB, Dominguez-Mejia AN, Schork D, Julius S. Sex-specific determinants of increased left ventricular mass in the Tecumseh blood pressure study. Circulation 1994; 90: 928–36.

    Article  PubMed  CAS  Google Scholar 

  2. Gardin, JM, Wagenknecht LE, Anton-Culver H, Flack J, Gidding S, Jurosaki T, Wong ND, Manolio TA. Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. Circulation 1995; 92: 380–87.

    Article  PubMed  CAS  Google Scholar 

  3. Dahlberg ST. Gender difference in the risk factors for sudden cardiac death. Cardiology 1990; 77: 531–40.

    Article  Google Scholar 

  4. Grohé C, Kahlert S, Löbbert K, Karas RH, Stimpel M, Vetter H, Neyses L. Cardiac myocytes and cardiac fibroblasts contain functional estrogen receptors. FEBS Left 1997; 416: 107–12.

    Article  Google Scholar 

  5. Grohé C, Kahlert S, Löbbert K, van Eickels M, Stimpel M, Vetter H, Neyses L. Effects of moexiprilat on estrogen-stimulated cardiac fibroblast growth. Br J Pharm 1997; 121: 1350–54

    Article  Google Scholar 

  6. Morley P, Whitfield IF, Vanderhyden BC, Tsang BK, Schwartz JL. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 1992; 131: 1305–12

    Article  PubMed  CAS  Google Scholar 

  7. Jiang C, Poole-Wilson PA, Sarrel PM., Mochizuki S, Collins P, Mcleod KT. Effect of 17ß-oestradiol on concentration, Ca“ current and intracellular free Ca” in guinea-pig isolated cardiac myocytes. Br J Pharm 1992; 106: 739–45.

    Article  CAS  Google Scholar 

  8. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995; 270: 1491–94.

    Article  PubMed  CAS  Google Scholar 

  9. Migliaccio A, Di Domenico M, Castoria G, deFalco A, Bontempo P, Nola, E, Auricchio F.Tyrosine kinase/p2lras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996; 15: 1292–300.

    PubMed  CAS  Google Scholar 

  10. Reiss K, Wie C, Ferber A, Kajstura J, Li P, Li B, Olivetti G, Homey CJ, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci 1996; 93: 8630–35.

    Article  PubMed  CAS  Google Scholar 

  11. Li R, Li G, Mickle D, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG. Overexpression of transforming growth factor-(31 and insulin-like growth factor-1 in patients with idiopathic hypertrophie cardiomyopathy. Circulation 1997; 96: 874–81.

    Article  PubMed  CAS  Google Scholar 

  12. Lee AV, Weng C N, Jackson JG, Yee D. Activation of estrogen receptor-mediated gene transcription by IGF-1 in human breast cancer cells. J Endocrinol 1997; 152: 39–47.

    Article  PubMed  CAS  Google Scholar 

  13. Kahlert S, Grohé C, Karas RH, Löbbert K, Neyses L, Vetter H. Effects of estrogen on skeletal myoblast growth. Biophys Biochem Res Comm 1997; 232: 373–78.

    Article  CAS  Google Scholar 

  14. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S,Gustafsson JA. Cloning of a novel estrogen receptor expressed in rat prostrate and ovary. Proc Natl Acad Sci 1996; 93: 5925–30.

    Article  PubMed  CAS  Google Scholar 

  15. Mosselman S, Polman J, Dijkema R. ERß: identification and chracterization of a novel human estrogen receptor. FEBS Lett 1997; 392: 49–53.

    Article  Google Scholar 

  16. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustaffson JA, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERa and ERß at AP 1 sites. Science 1997; 277: 1508–10.

    Article  PubMed  CAS  Google Scholar 

  17. Saunders PTK, Maguire SM, Gaughan J, Milar MR. Expression of oestrogen receptor beta (ER1) in multiple rat tissues visualised by immunohistochemistry. J Endocrinol 1997; 154: 13–16

    Article  Google Scholar 

  18. Sahlin L, Norstedt G., Eriksson H. Estrogen regulation of the estrogen receptor and insulinlike growth factor-I in the rat uterus: a potential coupling between effects of estrogen and IGF-1. Steroids 1994; 59: 421–30.

    Article  PubMed  CAS  Google Scholar 

  19. Richards RG, Diaugustine RP, Petrusz P, Clark GC, Sebastian J. Estradiol stimulates tyrosine phosphorylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-1 in the uterus. Proc Natl Acad Sci USA 1996; 93: 12002–07.

    Article  PubMed  CAS  Google Scholar 

  20. Kleinman D, Karas M, Roberts CT, Leroith D, Philip M, Segev Y, Levy J, Sharoni Y. Modulation of insulin-like growth factor I (IGF-1) receptors and membrane-associated IGFbinding proteins in endometrial cancer cells by estradiol. Endocrinology 1995; 140: 2531–37.

    Article  Google Scholar 

  21. Grohé C, Kahlert S, Nüdling S, Vetter H, Meyer R. Oestrogen activates the MAPK and JNK signal transduction pathway in rat cardiac myocytes. J Physiol (abstract) 1997; 11: 821.

    Google Scholar 

  22. Pappas TC, Gametchu B, Watson CS. Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J 1995; 9: 404–10.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grohé, C., Meyer, R., Vetter, H. (1999). Crosstalk between the Estrogen Receptor and the Insulin-Like Growth Factor (IGF-1) Receptor. Implications for Cardiac Disease. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics