Skip to main content

Sympathetic Regulation of Cardiac Delayed Rectification: Relationship to Cardiac Arrhythmias

  • Chapter
  • 68 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

Abstract

Electrical impulses control the frequency, strength, and duration of contraction of the heart. During the normal cardiac cycle, a regular rhythmic pattern must be established of time-dependent changes in cellular permeability to maintain the cardiac cycle that underlies normal cardiac function. Impulses, which originate in the sinoatrial (SA) node, are conducted by the myocardium throughout the atria until they converge at the atrioventricular (AV) node, pass through the bundle of His and the Purkinje fiber conducting system, and eventually excite the working myocardial cells in the ventricles. As the heart is a dynamic organ and must adjust its output with changes in physiological demand, control of electrical activity by neurohormones is essential in the maintenance of proper cardiovascular function. Recent work has linked defects in several ion channel proteins to at least two forms of inherited cardiac arrhythmias: the Long QT Syndrome (LQTS) [1] and the Brugada Syndrome [2]. In the cases of these diseases identified mutations in ion channel structure have been shown to cause functional changes in channel properties using heterologous expression of the channel proteins [3]. The data obtained to date indicate that the inherited changes (mutations) in channel structure change channel activity in a manner that is consistent with most disease phenotypes, but by themselves, are not sufficient to account for fatal cardiac events and sudden cardiac death (SCD). Other factors must be considered. Here one factor, the regulation of a key potassium current, the slow delayed rectifier channel IKs, will be discussed in the context of a possible link to fatal events in one form of the long QT syndrome: LQT 1 as this form of LQTS is most likely to lead to fatal arrhythmias in the face of sympathetic stimulation [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass RS, Davies MP. The roles of ion channels in an inherited heart disease: molecular genetics of the long QT syndrome. Cardiovasc Res 1996; 32: 443–54.

    PubMed  CAS  Google Scholar 

  2. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada R, Brugada J, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392: 293–96.

    Article  PubMed  CAS  Google Scholar 

  3. An RH, Bangalore R, Rosero SZ, Kass RS. Lidocaine block of LQT-3 mutant human Na channels. Circ Res 1996; 79: 103–08.

    Article  PubMed  CAS  Google Scholar 

  4. Moss AJ. Management of patients with the hereditary long QT syndrome. J Cardiovasc Electrophysiol 1998; 9: 668–74.

    Article  PubMed  CAS  Google Scholar 

  5. Noble D, Tsien R. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol 1969; 200: 205–31.

    PubMed  CAS  Google Scholar 

  6. Hauswirth O, Noble D, Tsien RW. The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J Physiol (Lond) 1969; 200: 255–65.

    CAS  Google Scholar 

  7. McAllister RE, Noble D, Tsien RW. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 1975; 251: 1–59.

    PubMed  CAS  Google Scholar 

  8. McDonald TF, Trautwein W. Membrane currents in cat myocardium: Separation of inward and outward components. J Physiol 1978; 274: 193–216.

    PubMed  CAS  Google Scholar 

  9. Noma A, Irisawa H. A time and voltage-dependent potassium current in the rabbit sinoatrial node cell. Pflug Arch 1976; 366: 251–58.

    Article  CAS  Google Scholar 

  10. Kass RS, Wiegers SE. The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J Physiol 1982; 322, 541–58.

    PubMed  CAS  Google Scholar 

  11. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990; 96: 195–215.

    Article  PubMed  CAS  Google Scholar 

  12. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegle PK. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guina pig myocytes. Circ Res 1993; 68: 77–84.

    Article  Google Scholar 

  13. Kass RS. Delayed Rectification in the Cardiac Purkinje Fiber is not activated by intracellular calcium. Biophys J 1984; 45: 837–39.

    Article  PubMed  CAS  Google Scholar 

  14. Tsien RW, Giles W, Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature 1972; 240: 181–83.

    CAS  Google Scholar 

  15. Carmeliet E, Mubagwa K. Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres. J Physiol 1986; 371: 201–17.

    PubMed  CAS  Google Scholar 

  16. Umento T. ß-actions of catecholamines on the K-related currents of the bullfrog atrial muscle. Jap J Physiol 1984; 34: 513–28.

    Article  Google Scholar 

  17. Walsh KB, Kass RS. Regulation of a heart potassium channel by protein kinase A and C. Science 1988; 242: 67–69.

    Article  PubMed  CAS  Google Scholar 

  18. Duchatelle-Gourdon 1, Hartzell HC, Lagrutta AA. Modulation of the delayed rectifier potassium current in frog cardiomyocytes by (3-adrenergic agonists and magnesium. J Physiol 1989; 415: 251–74.

    Google Scholar 

  19. Harvey RD, Hume JR. Autonomic regulation of delayed rectifier K+ current in Mammalian heart involves G proteins. Am J Phys 1987; 257: H818–23.

    Google Scholar 

  20. Yazawa K, Kameyama M. Mechanism of receptor-mediated modulation of the delayed outward potassium current in guinea-pig ventricular myocytes. J Physiol 1990; 421: 135–50.

    PubMed  CAS  Google Scholar 

  21. Bennett PB, Begenisich T. Catecholamines modulate the delayed rectifying potassium current (IK) in guinea pig ventricular myocytes. Pflug Arch 1987; 410: 217–19.

    Article  CAS  Google Scholar 

  22. Anumonwo JM, Freeman LC, Kwok WM, Kass RS. Potassium channels in the heart: electrophysiology and pharmacologcial regulation. Cardiovasc Drug Rev 1991; 9: 299–316.

    Article  CAS  Google Scholar 

  23. Hartzell HC. Regulation of cardiac ion channels by catecholamines, acetylcholine, and second messenger systems. Prog Biophys Molec Biol 1987; 52: 165–247.

    Article  Google Scholar 

  24. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY. Cloning of genomic and complementary DNA from Shaker, a putative potassium channels gene from Drosophila. Science 1987; 237: 749–53.

    Article  PubMed  CAS  Google Scholar 

  25. Pongs O, Kecskemethy N, Muller R, Krah-Jentgens I, Baumann A, Kiltz HH, et al. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J 1988; 7: 1087–96.

    PubMed  CAS  Google Scholar 

  26. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT. Structural conservation in prokaryotic and eukaryotic potassium channels. Science 1998; 280: 106–09.

    Article  PubMed  CAS  Google Scholar 

  27. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 1991; 350: 232–35.

    Article  PubMed  CAS  Google Scholar 

  28. Catterall WA. Ion channels in plasma membrane signal transduction. J Bioenerg Biomembr 1996; 28: 217–18.

    Article  PubMed  CAS  Google Scholar 

  29. Mackinnon R. Pore loops: an emerging theme in ion channel structure. Neuron 1995; 14: 88992.

    Article  Google Scholar 

  30. Pragnell M, Snay KJ, Trimmer JS, Maclusky NJ, Naftolin F, Kaczmarek LK, Boyle MB. Estrogen induction of a small, putative K‘ channel mRNA in rat uterus. Neuron 1990; 4: 80712.

    Article  Google Scholar 

  31. Goldstein SA, Miller C. Site-specific mutations in a minimal voltage-dependent K’ channel alter ion selectivity and open-channel block. Neuron 1991; 7: 403–08.

    Article  PubMed  CAS  Google Scholar 

  32. Busch AE, Kavanaugh MP, Varnum MD, Adelman JP, North RA. Regulation by second messengers of the slowly activating, voltage-dependent potassium current expressed in Xenopus oocytes. J Physiol 1992; 450: 491–502.

    PubMed  CAS  Google Scholar 

  33. Moss A, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, Maccluer J, et al. The long QT syndrome: prospecitve longitudinal study of 328 families. Circulation 1991; 84: 1136–44.

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz PJ, Periti M, Malliani A. The long Q-T syndrome. Am Heart J 1975; 89: 378–90.

    Article  PubMed  CAS  Google Scholar 

  35. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I,,, potassium channel. Cell 1995; 81: 299–307.

    Article  PubMed  CAS  Google Scholar 

  36. Wang Q, Shen J. Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995; 80: 805–11.

    Article  PubMed  CAS  Google Scholar 

  37. Bennett PB, Yazawa K, Matika N, George AL. Molecular mechanism for an iniherited cardiac arrhythmia. Nature 1995; 376: 683–685.

    Article  PubMed  CAS  Google Scholar 

  38. Priori SG, Napolitano C, Cantu F, Brown AM, Schwarz PJ. Differential response to Na’ channel blockade, 13-adrenergic stimulation and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circ Res 1996; 78: 1009–15.

    Article  PubMed  CAS  Google Scholar 

  39. Wang DW, Yazawa K, Makita N, George AL, Bennett PB. Pharmacological targetting of long QT mutant sodium channels. J Clin Invest 1997; 99: 1714–20.

    Article  PubMed  CAS  Google Scholar 

  40. Warmke J, Drysdale R, Ganetzky B. A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 1991; 252: 1560–62.

    Article  PubMed  CAS  Google Scholar 

  41. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994; 91: 3438–42.

    Article  PubMed  CAS  Google Scholar 

  42. Schonherr R, Heinemann SH. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol 1996; 493: 635–42.

    PubMed  Google Scholar 

  43. Zou A, Xu QP, Sanguinetti MC. A mutation in the pore region of HERG K’ channels expressed in xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J Physiol 1998; 509: 129–37.

    Article  PubMed  CAS  Google Scholar 

  44. Ho WK, Kim I, Lee CO, Earm YE. Voltage-dependent blockade of HERG channels expressed in Xenopus oocytes by external Ca’ and Mg’. J Physiol 1998; 507: 631–38.

    Article  PubMed  CAS  Google Scholar 

  45. Sanguinetti MC, Curran ME, Zou A, Shen K, Spector PS, Keating MT. Coassambly of K(v)LQT1 and minK (IsK) proteins to form cardiac Iks potassium channel. Nature 1996; 384: 80–83.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Vanraay TJ, et al. Positional cloning of a novel potassium channel gene–KVLQT1 mutations cause cardiac arrhythmias. Nat Gen 1996; 12: 17–23.

    Article  Google Scholar 

  47. Noble D, Tsien R. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol (Lond) 1968; 195: 185–214.

    CAS  Google Scholar 

  48. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(v)LQT1 and IsK (MinK) proteins associate to form the Iks cardiac potassium current. Nature 1996; 384: 78–80.

    Article  PubMed  CAS  Google Scholar 

  49. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of HERG K channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 1996; 93: 2208–12.

    Article  PubMed  CAS  Google Scholar 

  50. Folander K, Smith JS, Antanavage J, Bennett C, Stein RB, Swanson R. Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sci USA 1990; 87: 2975–79.

    Article  PubMed  CAS  Google Scholar 

  51. Murai T, Kazikuza A, Takumi T, Ohkubo H, Nakanishi S. Molecular cloning and sequence analysis of human genomic DNA encoding a novel membrane protein which exhibits a slowly activating potassium channel activity. Biochem Biophys Res Comm 1989; 161: 176–81.

    Article  PubMed  CAS  Google Scholar 

  52. Folander K, Douglass J, Swanson R. Confirmation of the assignment of the gene encoding K(V)1.3, a voltage-gated potassium channel (KCNA3) to the proximal short arm of human chromosome 1. Genomics 1994; 23: 295–96.

    Article  PubMed  CAS  Google Scholar 

  53. Busch AE, Herzer T, Takumi T, Krippeitdrews P, Waldegger S, Lang F. Blockade of human IsK channels expressed in Xenopus oocytes by the novel class III antiarrhythmic drug NE-10064. Eur J Pharmacol 1994; 264: 33–37.

    Article  PubMed  CAS  Google Scholar 

  54. Splaswski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 1997; 17: 33840.

    Google Scholar 

  55. Defferrari GM, Locati EH, Priori SG, Schwarz PJ. Left cardiac sympathetic denervation in long QT syndrome patients. J Intervent Cardiol 1995; 8: 776–81.

    Article  Google Scholar 

  56. Schwartz PJ, Locati EH, Napolitano C, Priori SB. The long QT syndrome. In: Cardiac Electrophysiology: From Cell to Bedside. Eds. Zipes DP, Jalife J. ( Philadelphia: W.B. Saunders Co ) 1995; 788–811.

    Google Scholar 

  57. Hajj-Ali R, Zareba W, Rosero SZ, Moss AJ, Schwartz PJ, Benhorin J, Priori SG, Robinson JL, Locati EH. Adrenergic triggers and non-adrenergic factors associated with cardiac events in long QT syndrome patients. PACE 1997; 20: 1072 [Abstract].

    Article  Google Scholar 

  58. Walsh KB, Begenisich TB, Kass RS. (3-adrenergic modulation of cardiac ion channels: differential temperature-sensitivity of potassium and calcium currents. J Gen Physiol 1989; 93: 841–54.

    Article  PubMed  CAS  Google Scholar 

  59. Walsh KB, Kass RS. Distinct voltage-dependent regulation of a heart delayed IK by protein kinases A and C. Am J Physiol 1991; 261: C1081–90

    PubMed  CAS  Google Scholar 

  60. Blumenthal EM, Kaczarek LK. Modulation by cAMP of a slowly activating potassium channel expressed in Xenopus oocytes. J Neurosci 1992; 12: 290–96.

    PubMed  CAS  Google Scholar 

  61. Busch AE, Maylie J. MinK channels: A minimal channel protein with a maximal impact. Physiol Biochem 1993; 3: 270–76.

    CAS  Google Scholar 

  62. Varnum MD, Busch AR, Bond CT, Maylie J, Adelman JP. The min K channel underlies the cardiac potassium current IKs and mediates species-specific reponses to protein kinase C. PNAS 1993; 90: 11528–32.

    Article  PubMed  CAS  Google Scholar 

  63. Busch AE, Varnum MD, North RA, Adelman JP. An amino acid mutation on a potassium channel that prevents inhibition by protein kinase C. Science 1992; 255: 1705–07.

    Article  PubMed  CAS  Google Scholar 

  64. Yang WP, Levesque PC, Little WA, Conder ML, Shalaby FY, Blanar MA. KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci USA 1997; 94: 4017–21.

    Article  PubMed  CAS  Google Scholar 

  65. Gao T, Yatani A, Dell’acqua ML, Sako, Green SA, Dascal N, Scott JD, Hosey MM. cAMPdependent regulation of cardiac L-type Ca’ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19: 185–96.

    Article  PubMed  CAS  Google Scholar 

  66. Puri TS, Gerhardstein BL, Zhao XL, Ladner MB, Hosey MM. Differential effects of subunit interactions on protein kinase A- and C-mediated phosphorylation of L-type calcium channels. Biochem 1997; 36: 9605–15.

    Article  CAS  Google Scholar 

  67. Zhao XL, Gutierrez LM, Chang CF, Hosey MM. The alpha 1-subunit of skeletal muscle L-type Ca channels is the key target for regulation by A-kinase and protein phosphatase-1C. Biochem Biophys Res Comm 1994; 198: 166–73.

    Article  PubMed  CAS  Google Scholar 

  68. Ahlijalian MK, Westenbroek RE, Catterall WA. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 1990; 4: 819–32.

    Article  Google Scholar 

  69. Gray PC, Tibbs VC, Catterall WA, Murphy BJ. Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem 1997; 272: 6297–302.

    Article  PubMed  CAS  Google Scholar 

  70. Gurevich VV, Dion SB, Onorato JJ, Ptasienski K, Kim CM, Sterne-Man R, Hosey MM, Benovic JL. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, 132-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 1995; 270: 720–31.

    Article  PubMed  CAS  Google Scholar 

  71. Rotman EI, Murphy BJ, Catterall WA. Sites of selective cAMP-dependent phosphorylation of the L-type calcium channel alpha-1 subunit from intact rabbit skeletal muscle myotubes. J Biol Chem 1995; 270: 16371–77.

    Article  PubMed  CAS  Google Scholar 

  72. Scultoreanu A, Scheuer T, Catterall WA. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 1993; 364: 24043.

    Google Scholar 

  73. An RH, Heath B, Koch WJ, Lefkowitz RI, Kass RS. Targeting of cAMP-dependent increases in L-type Ca (Ica) over delayed K channel (IKs) activity by overexpression of the [32 adrenergic receptor in the developing mouse heart. Biophys J 1998; 74: A35 [Abstract].

    Google Scholar 

  74. Bristow MR, Feldman AM. Changes in the receptor-G protein-adenylyl cyclase system in heart failure from various types of heart muscle disease. Basic Res Cardiol 1992; 87: 15–35.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kass, R.S. (1999). Sympathetic Regulation of Cardiac Delayed Rectification: Relationship to Cardiac Arrhythmias. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics