Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 10))

Abstract

In air pollution modeling, and more generally in the environmental monitoring and exposure assessment literature, the Larsen change-of-support model has had a considerable impact. The Larsen model is equivalent to the de Wijsian model as was first shown by Orfeuil. For noise exposure assessment Larsen type formulas have recently been introduced by Malchaire.

The aim of the present paper is twofold: first, to explain to environmental scientists the connections between the Larsen approach and the de Wijsian change-of-support model of geostatistics; second, to discuss its application to noise exposure series on the basis of two typical examples from occupational hygiene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitchison, J. and Brown, J.A.C. (1957) The Lognormal Distribution: with special reference to its use in economics, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bastide, M.J.C. (1988) Estimation et mesure du niveau acoustique continu équivalent, Revue de Statistique Appliquée, 36, 5–14.

    Google Scholar 

  • David, M. (1977) Geostatistical Ore Reserve Estimation, Elsevier, Amsterdam.

    Google Scholar 

  • Journel, A.G. and Huijbregts, C.J. (1978) Mining Geostatistics, Academic Press, London.

    Google Scholar 

  • Krige, D.G. (1951) A Statistical Approach to Some Mine Valuation and Allied Problems in the Witwatersrand, MSc thesis, University of the Witwatersrand, Johannesburg.

    Google Scholar 

  • Krige, D.G. (1981) Lognormal-de Wijsian Geostatistics for Ore Evaluation, South African Institute of Mining and Metallurgy, Johannesburg.

    Google Scholar 

  • Lajaunie, C. (1993) Les bases de la modélisation géostatistique de l’effet de support, Les Notes Scientifiques et Techniques de ITNRS, 104, 15–28.

    Google Scholar 

  • Larsen, R.I. (1969) A new mathematical model of air pollutant concentration averaging time and frequency, Journal of the Air Pollution Control Association, 19, 24–30.

    Article  Google Scholar 

  • Larsen, R.I. (1973) Response (to comments by N.R. Patel), Journal of the Air Pollution Control Association, 23, 292.

    Article  Google Scholar 

  • Malchaire, J. (1994) Programmes de Conservation de VAudition, Masson, Paris.

    Google Scholar 

  • Malchaire, J. and Piette, A. (1997) A comprehensive strategy for the assessment of noise exposure and risk of hearing impairment, Annals of Occupational Hygiene, 41, 467–484.

    Google Scholar 

  • Mandelbrot, B.B. (1997) Fractals and Scaling in Finance, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Matheron, G. (1955) Application des méthodes statistiques à l’évaluation des gisements, Annales des Mines, 144–XII, 50–75.

    Google Scholar 

  • Matheron, G. (1962) Traité de Géo statistique Appliquée, Technip, Paris.

    Google Scholar 

  • Matheron, G. (1965) Les Variables Régionalisées et leur Estimation, Masson, Paris.

    Google Scholar 

  • Matheron, G. (1973) Effet proportionnel et lognormalité ou: le retour du serpent de mer, Publication N-374, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau.

    Google Scholar 

  • Orfeuil, J.P. (1975) Interprétation géostatistique du modèle de Larsen, Publication N-413, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau.

    Google Scholar 

  • Patel, N.R. (1973) Comment on “A new mathematical model of air pollutant concentration”, Journal of the Air Pollution Control Association, 23, 291–292.

    Article  Google Scholar 

  • Préat, B. (1987) Application of geostatistical methods for estimation of the dispersion variance of occupational exposures, American Industrial Hygiene Association Journal, 48, 877–884.

    Google Scholar 

  • Rivoirard, J. (1990) A review of lognormal estimators for in situ reserves, Mathematical Geology, 22, 213–221.

    Article  Google Scholar 

  • Rivoirard, J. (1994) Introduction to Disjunctive Kriging and Non-Linear Geo-statistics, Oxford University Press, Oxford.

    Google Scholar 

  • Singpurwalla, N.D. (1972) Extreme values from a lognormal law with applications to air pollution problems, Technometrics, 14, 703–711.

    Article  MATH  Google Scholar 

  • Thiéry, L., Louit, P., Lovat, G., Lucarelli, D., Raymond, F., Servant, J.P. and Signorelli, C. (1994) Exposition des Travailleurs au Bruit: Méthode de Mesurage, Editions INRS, ED 772, Paris.

    Google Scholar 

  • Thiéry, L., Wackernagel, H. and Lajaunie, C. (1996) Geostatistical analysis of time series of short LAeq values, Proceedings of INTER-NOISE96, Liverpool (UK), 2065–2068.

    Google Scholar 

  • Wackernagel, H., Lajaunie, C, Thiéry, L., Vincent, R., Grzebyk, M. (1997) Applying geostatistics to exposure monitoring data in industrial hygiene. In: Soares, A., Gómez-Hernández, J. and Froidevaux, R. (Eds.) geoENV I: Geostatistics for Environmental Applications, 463–476, Kluwer Academic Publisher, Amsterdam.

    Chapter  Google Scholar 

  • Wackernagel, H. (1998) Multivariate Geostatistics, 2nd edition, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Wijs, H.J. de (1951) Statistics of ore distribution, part I: frequency distribution of assay values, Geologie en Mijnbouw, 13, 365–375.

    Google Scholar 

  • Wijs, H.J. de (1953) Statistics of ore distribution, part II: theory of the binomial distribution applied to sampling and engineering problems, Geologie en Mijnbouw, 15, 12–24.

    Google Scholar 

  • Wild, P., Hordan, R., Leplay, A. and Vincent, R. (1996) Confidence intervals for probabilities of exceeding threshold limits with censored log-normal data, Environmetrics, 7, 247–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wackernagel, H., Thiery, L., Grzebyk, M. (1999). The Larsen Model from a De Wijsian Perspective. In: Gómez-Hernández, J., Soares, A., Froidevaux, R. (eds) geoENV II — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9297-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9297-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5249-0

  • Online ISBN: 978-94-015-9297-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics