Skip to main content

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 205))

Abstract

When the University of St Andrews was founded in 1410 its first rector was Lawrence of Lindores (circa 1437). All historians of the university mention that he was also ‘Inquisitor of heretical pravity’ — the main inquisitor of the kingdom of Scotland— and that, as such, one of his unattractive features was his zeal in bringing Lollards to the stake.1 If the prior of St Mary’s had had his way there would have been even more victims, for he wrote to Lawrence an admonitory letter (1418) richly larded with quotations from Scripture and from pious writers, chiding him for his laxity and ominously imputing to him a tendency to heresy himself.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. J. Maitland, ‘The Beginnings of St Andrews University 1410–1418’, in: Scottish Historical Review 8 no. 31 (1911). At Lawrence’s instigation in 1406 at Perth the first martyr fire was kindled in Scotland (p.239).

    Google Scholar 

  2. James Haiderstone, Copiale Prioratus Sancti Andrée (The letter book of James Haiderstone, Prior of St Andrews, 1418–1443) J.H. Baxter ed. Oxford 1930, pp.3, 382–384.

    Google Scholar 

  3. Acta Facultatis Artium Universitatis Sancti Andrée 1413 - 1586. A.J. Dunlop ed. Edinburgh- London 1964, p. 12.

    Google Scholar 

  4. Albert of Saxony brought this doctrine to Cologne; Heinrich of Langenstein to Vienna.

    Google Scholar 

  5. K. Michalski, ‘Les Courants philosophiques à Oxford et à Paris pendant le XlVe Siècle’, in: Bull. Intern, des Sciences et des Lettres de l’Académie Polonaise, Année 1916,p.88.

    Google Scholar 

  6. Acta Facultatis, pp.48–49.

    Google Scholar 

  7. See e.g. W.H. Wallace, O.P., Causality and Scientific Explanation. Ann Arbor 1972, p.82, who speaks of Thomas’s knowledge of ‘projective geometry’ as revealed by his proving the rotundity of the earth by its casting a round shadow on the moon. In fact this just repeats Aristotle’s arguments (Aristotle, De Coelo Bk.II, ch.14; 297b24ff.).

    Google Scholar 

  8. Petrus Apianus, Cosmographia, Antwerpen 1539: ‘Coelum empireum habitaculum dei et omnium electorum.’

    Google Scholar 

  9. Rembertus Dodonaeus. Cosmographia in Astronomiam et Geographiam. Isagoge, Antwerpen 1548: ‘Coelum Empyreum, Beatorum sedes et habitaculum.’ Thomas Digges, who let the heaven of the fixed stars extend to infinity, had no difficulty in identifying this starry heaven with the dwelling-place of the elect.

    Google Scholar 

  10. Thomas Digges, A Perfit Description of the Caelestiall Orbes. London 1576: ‘This orbe of starres fixed infinitely up extendeth itself in altitude sphericallye…, the habitacle for the elect.’

    Google Scholar 

  11. Aristotle’s Prime Mover is a passive ‘final cause’ and not a working ‘efficient cause’.

    Google Scholar 

  12. It need hardly be said that at the same time the omnipotence of God was maintained. Medieval theologians were keenly aware of the fact that all their speaking about God was but a ‘stammering’ in an often inconsistent way.

    Google Scholar 

  13. Thomas Aquinas, Summa contra Gentiles, Bk.II, qu.98, art.l. In: Opera Omnia XII, Romae 1901, suppl. p.213.

    Google Scholar 

  14. E.g. in Francisco Maurolyco, Cosmographia (1535), dial.I, Introd.

    Google Scholar 

  15. Daniel Schwenter, Deliciae Physico-mathematicae, Nuremberg 1636, Tl.III, Auffgab XVI, p. 186. In Dante’s Inferno (14th cent.) Lucifer is seated on a throne at the centre of the earth. Dante’s opinion that extreme cold reigns there (so that Lucifer is up to his waist in ice) is, however, quite exceptional (Dante, Inferno, XXXIV 11.70–111).

    Google Scholar 

  16. Thomas Aquinas, Summa contra Gentiles. Bk.II, ch. 1; ch.2.

    Google Scholar 

  17. Aristotle, De Coelo, Bk.I, ch.2.

    Google Scholar 

  18. Thomas Aquinas, Summa Theologica, Bk.III, suppl. qu.97, art.7, n.2. (Opera Omnia XII, p.243).

    Google Scholar 

  19. Ibidem, qu.98, art. 1 (Opera Omnia XII, p.243).

    Google Scholar 

  20. J. Ciarisse ed., Sterre- en natuurkundig onderwijs, gemeenlijk genoemd: Natuurkunde van het geheel-al, en gehouden voor het Werk van zekeren Broeder Gheraert, Leiden 1847.

    Google Scholar 

  21. ‘Nu wil ic u doen ghewach/Waer die helle wesen mach/Bi scrifturen proef men wel/Dat si niewel el/Dan in midden van ertrike/Dats in centro sekerlike’ (Clarisse ed., Natuurkunde van het Geheel-ahp.m, 11.1701–1706).

    Google Scholar 

  22. ‘… et la plus basse chose et la plus parfonde qui soit au monde est li poins de la terre, ce est li milieu dedans, qui est apelez abismes, là où enfers est assis’ (see: P. Duhem, Le Système du Monde IX, p. 127).

    Google Scholar 

  23. ‘… quanto espaço ha… daqui ao centro do mundo e ao meio do inferno dos condenados, que he a medida do cemidiametro’ (D. Joao de Castro, Tratado da Spaera. In: Obras Complétas de D. Joào de Castro, A. Cortesâo and L. de Albuquerque ed., Vol.I, Coimbra 1968, p.63).

    Google Scholar 

  24. Ibidem (Obras I, pp.58–59).

    Google Scholar 

  25. Alphius: Plumbum nunquam perveniret ad centrum nisi liquefactum’ (Erasmus, Colloquia, Basel 1533; In: Opera Desiderii Erasmi Roterodami…. Ordinis Primi Tomus Tertius, Amsterdam 1972, pp.714–715.)

    Google Scholar 

  26. Aristotle, De Coelo, Bk.II, ch.7, 289a24–25.

    Google Scholar 

  27. Johannes Buridanus, Quaestiones super Libros Quattuor de Coelo et Mundo, Bk.II, qu.16. Quoted from edition E.A. Moody, Cambridge, Mass. 1942, p.204.

    Google Scholar 

  28. Johannes Buridanus, Quaestiones super Libros Quattuor de Coelo et Mundo, III, qu.16 (Moody p.200)

    Google Scholar 

  29. Plutarch (circa 47 - circa 120), Moralia; quoted by L. Thorndike, A History of Magic and Experimental Sciences, New York 1929, Vol.I, p.219.

    Google Scholar 

  30. Adelard of Bath, De Eodem et Diverso, ch.48; Quaestiones Naturales, eh. 13–14 (cf Thorndike, A History of Magic and Experimental Sciences, Vol.11, p.35). Vincentius Bellovacensis, Speculum Naturale, VII, 7 (cf CS. Lewis, The Discarded Image, an Introduction to Medieval and Renaissance Literature, Cambridge 1964, p. 141). For al-Khwazimi, see Clagett, The Science of Mechanics in the Middle Ages, Madison 1961, pp.58, 60.

    Google Scholar 

  31. ‘… toda a coisa pesada em sumo grau, deseja o centro, e ali folga e cessa de se mover’ (Guia de Munique, ch.I. In: L. Mendonça de Alberquerque, Os Guias Nauticos de Munique e Evora, Lisboa 1965,p.l61). Cf Castro, Obras I,p.l20.

    Google Scholar 

  32. Cf R. Hooykaas, Das Verhältnis von Physik und Mechanik in historischer Hinsicht, Wiesbaden 1963, p. 10

    Google Scholar 

  33. R. Hooykaas, Religion and the Rise of Modern Science, Edinburgh 1972, eh.III, pp.56–59.

    Google Scholar 

  34. P. Duhem, études sur Léonard de Vinci, Vol.Ill, Paris 1955, p.24.

    Google Scholar 

  35. Aristotle, Physica, Bk.VII, ch.5.

    Google Scholar 

  36. M.A. Hoskin and A.G. Molland, ‘Swineshead on Falling Bodies: an Example of Fourteenth Century Physics’, in: Brit. Journ. Hist. Sei 3 (1966), pp.150–182. The tract ‘De loco elementi’ is part of ’Liber Calculationum’, written after 1328.

    Google Scholar 

  37. Thomas Bradwardine, His Tractatus de Proportionibus (1328). H.L. Crosby transi, and ed., Madison 1954, pp.110–116.

    Google Scholar 

  38. Cf M. Clagett, The Science of Mechanics in the Middle Ages, Madison 1961, pp.437ff.. In cap.III: ‘The proportion of the velocities of motions follows the proportion of the power of the mover to the power of the moved thing’ (Clagett, ibidem, p.438).

    Google Scholar 

  39. Hoskin and Molland, ‘Swineshead on Falling Bodies’, p.438.

    Google Scholar 

  40. A. Maier, An der Grenze von Scholastik und Naturwissenschaft, Essen 1943, ch.2, pp.288–348

    Google Scholar 

  41. ’Oresme’s Methode der graphischen Darstellung’. Anneliese Maier introduced the phrase ‘the mechanization of the world picture’ (A. Maier, Die Mechanisierung des Weltbildes im 17. Jahrhundert, Leipzig 1938).

    Google Scholar 

  42. See A. Maier, Zwei Grundprobleme der scholastischen Natur philosophie, 2. Aufl. Roma 1951, p.88 n.1.

    Google Scholar 

  43. Michalski, ‘La Physique nouvelle et les différents Courants philosophiques au XlVe Siècle’, in: Bull. Intern. Acad. Polon. Sei., Cl. Lettres; (Année 1927), p. 157.

    Google Scholar 

  44. Nicole Oresme, Tractatus de Configurationibus Qualitatum, P.I, ch.22. Cf Duhem, Le Système du Monde Vol. VII, pp.582, 585. Cf Maier, Zwei Grundprobleme, p.105.

    Google Scholar 

  45. Duhem, Le Système du Monde, Vol.VII, pp.583, 585; Maier, Zwei Grundprobleme, p. 108.

    Google Scholar 

  46. On the other hand it shows some affinity with the ancient theory of ‘signatures’; the sympathy between things of the same shape, which led to such ideas as that liverwort (agrimony; hepatica) is a cure for liver disease. For now the ‘configurations’ of certain ‘occult qualities’ of precious stones etc., are effective on similar ‘configurations’ of bodies or parts of bodies.

    Google Scholar 

  47. Henricus de Hassia, Tractatus de Reductione Ejfectuum Specialium in Virtutes Communes et Causas Générales, ch.l, 23, 25 (quoted from Duhem, Le Système du Monde, VII, pp.589; 594, 598). See also Duhem, Le Système du Monde, VII, p.585. For Oresme see: Maier, Zwei Grundprobleme, p. 108.

    Google Scholar 

  48. Henricus de Hassia, ibidem, ch. 1 (quoted from Duhem, Le Système du Monde, VII, pp.587–588).

    Google Scholar 

  49. William of Ockham (circa 1320), however, considered motion as just a sequence of places occupied by the moving body; once a body possesses motion it will keep it; the projectile is its own motor and not some implanted force of the air. If the air were the moving cause, what then would happen when two arrows moving along the same path in opposite directions are meeting? (Ockham, Sentent., II, qu.l8;26. Cf Maier, Zwei Grundprobleme, pp.155, 157.

    Google Scholar 

  50. See for similar conceptions in the Arab and Latin Middle Ages: Clagett, The Science of Mechanics, pp.510ff;520,523.

    Google Scholar 

  51. K. Michalski, ‘La Physique nouvelle’, p. 157. Lawrence, however, wanted to save Aristotle as well as the phenomena, for at the same time he tried to twist the Philosopher into conformity with the impetus theory. One of his followers at Erfurt (’Magister de Stadiis’) wrote: ‘Others say, with Londorius, that when the Philosopher [Aristotle, RH] says that the projectile is moved by the air, this does not refer to the efficient cause properly so called, but to the necessarily accompanying cause (causa sine qua non)’ (Physica Bk.VIII, qu.l 1, quoted by Michalski, ibidem, p. 158.). That is, the presence of air is an indispensible condition for the motion, but the motion’s cause is the impetus. Evidently Londorius thought that Buridan went too far in his abstractions.

    Google Scholar 

  52. Buridanus, Quaestiones super Libros Quattuor de Coelo et Mundo, Bk.II, qu. 12 (Moody p. 180).

    Google Scholar 

  53. Johannes Buridanus, Quaestiones super Octo Phisicorum Libros Aristotelis, Parisiis 1509, Bk.VIII, qu.12,fol.CXXI,col.l.

    Google Scholar 

  54. Cf E.J. Dijksterhuis, De Mechanisering van het Wereldbeeld, Amsterdam 1950, Pt.II, §113 (pp.201–202), criticised Maier’s arguments against this comparison (cf Maier, Die Vorläufer Galileis im U.Jahrhundert, Roma 1949, pp.141 ff).

    Google Scholar 

  55. Buridan, Quaestiones de Coelo et Mundo, Bk. II, qu.l2 (Moody p. 180); —, Questiones Phisicorum, Bk.VIII, qu.l2. fol.CXXr, col.2.

    Google Scholar 

  56. Oresme, Le Livre du Ciel et du Monde, Bk.II, ch.2. (A.D. Menut and J. Denomy ed. London: Madison 1968,p.285).

    Google Scholar 

  57. Buridan, Quaestiones Phisicorum, Bk.VIII, qu. 12, fol.CXXIr, col.2.

    Google Scholar 

  58. Gravity continually impresses impetus on falling bodies, and as their downward motion increases this impetus (impetus accidentalis) they will move swifter, and the swifter motion gives a greater impetus, etc., so that they fall with an accelerating velocity (Buridan, Questiones Phisicorum, Bk.VIII, qu.12, fol.CXXvs, col.2; Buridan, Quaestiones de Coelo et Mundo, Bk.II, qu.l2 (Moody pp. 180–181).

    Google Scholar 

  59. Buridan, Quaestiones de Coelo et Mundo, Bk.I V, ch.7. (Moody p.267).

    Google Scholar 

  60. Buridan, Quaestiones Phisicorum, Bk.VIII, ch.12.

    Google Scholar 

  61. Oresme, Le Livre du Ciel et du Monde, Bk.II, ch.31 (Menut and Denomy, p. 172)

    Google Scholar 

  62. Oresme, ibidem, Bk.I, ch. 18, (Menut and Denomy, p. 144.)

    Google Scholar 

  63. Oresme, Quaestiones de Spera. Quoted by Clagett, The Science of Mechanics, p.553.

    Google Scholar 

  64. Albert of Saxony, De Coelo, Bk.II, qu.14; cf P. Duhem, Le Système du Monde, VIII, 291; Clagett, The Science of Mechanics, pp.566; 569.

    Google Scholar 

  65. Cf Bradwardine, De Proportionibus, ch.3 (Crosby pp.11 off.); Crosby says of Bradwardine’s ‘law’ that ‘it is an axiom rather than a theorem’ (p.38).

    Google Scholar 

  66. The first suggestion that the motion of a falling body is uniformly accelerated was made at a very late date (1555); see Clagett, The Science of Mechanics, pp.555–556.

    Google Scholar 

  67. Buridan, Quaestiones Phisicorum, 1.VII, qu.8, ed. Paris 1509, fol.CVIIIvs, col. 1.

    Google Scholar 

  68. Oresme, Le Livre du Ciel et du Monde, Bk.I, ch.29 (Menut and Denomy p. 196).

    Google Scholar 

  69. L. Vives, De Causis Corruptarum Artium, I.V. Quoted from: Vives, Opera, Basileae 1555, Vol.1, p.410.

    Google Scholar 

  70. G. Sarton, Introduction to the History of Science, Vol.III, Baltimore 1947, p.737.

    Google Scholar 

  71. ‘… qui pene modum excessit ingenii humani’ (J.C. Scaliger, Exotericarum Exercitationum, Libri XV ad Hieronymum Cardanum (1557). exerc.324. (ed. Francofurti 1612, p. 1028). Cf exerc.340 (p. 1068); exerc.22 (p. 104); exerc.28 (p.131).

    Google Scholar 

  72. Scaliger, Exotericarum Exercitationum, exerc. 16,4 (p.83).

    Google Scholar 

  73. Erasmus, Colloquia (Opera, pp.714–715). (Cf above, p. 124n.22).

    Google Scholar 

  74. Francisco Maurolyco, Cosmographia (1535). Quoted from ed. 1543, Dialogus I. See P. Duhem, Etudes sur Léonard de Vinci, Vol.III, pp. 195–196. He says that only those without a sound knowledge of the problem will say that the stone immediately stops at the centre. The impetus of its weight, however, makes it pass the centre and perform oscillations which become smaller as the impetus gradually diminishes. In the same way a weight hanging from a cord, when displaced from the vertical position will perform diminishing oscillations finally stopping at the vertical position. The partner in the dialogue recognizes that this speculation is supported by a well-chosen illustration and reminds the other speaker of Erasmus’ Colloquia.

    Google Scholar 

  75. N. Tartaglia, Nova Scientia, Venice 1537, Bk.I. prop.I (transi, by S. Drake in: S. Drake and J.E. Drabkin ed., Mechanics in Sixteenth Century Italy, Madison 1969, p.76).

    Google Scholar 

  76. J.B. Benedetti, Diversarum Speculationum Mathematicarum et Physicarum Liber, Torino 1585, p.369 (tranls. by S. Drake, in: S. Drake and J.E. Drabkin ed., Mechanics in Sixteenth Century Italy, Madison 1969, p.235).

    Google Scholar 

  77. Galileo Galilei, Dialogo sopra i Due Massimi Sistemi del Mondo, Tolomaico e Copernicano, Argentorati 1632. Reprint in: Opere VII, pp.27–546. Quotations from —, The System of the World in Four Dialogues. Wherein the two Grand Systems of Ptolemy and Copernicus are Largely Discoursed… in: Thos Salisbury, Mathematical Collections and Translations Vol.1, London 1661, p.117.

    Google Scholar 

  78. Ibidem (Salisbury, p.207).

    Google Scholar 

  79. The navigator D. Joäo de Castro held (1538) that a leaden ball, dropped into a hole passing through the earth’s centre, ‘when arrived at the centre, would halt as if it were hanging there, quiet and at ease, without going any farther. The reason for this is that all heavy things descend to the middle, which is the centre, and if thence they would go farther this would be not descension but ascension’ (D. Joäo de Castro, Tratado da Esfera. In: Obras I, pp.58–59). Cf R. Hooykaas, Science in Manueline Style, Coimbra 1980, p.31. Towards the end of the century (1592) the Netherlandish pilot and nautical writer Lucas Jansz Waghenaer (1553 - 1606) held that a stone would fall to the centre of the earth (were it not impeded by the solidity of the earth) and would remain there hanging and at rest (L J. Waghenaer, Thresoor derZeevaert, Leyden 1592, Bk.III, p. 196). The Altdorf professor of physics Daniel Schwenter, who was one of the pioneers in the introduction of experiments in the university teaching of physics, was in general a faithful follower of Aristotle, ‘this miracle man’ (D. Schwenter, Deliciae Physico-mathematicae (1636), p.390), e.g. when attributing some influence of the air in propelling a projected body (p. 188) and when holding that the heavier a body is, the faster it will fall (p.391). On the topic of the stone falling into a hole that pierces the Earth, however, he took the side of Maurolyco and Walther Ryff (who followed Maurolyco) and held that the stone would oscillate until it came to rest at the centre of the universe. He also made the comparison with the pendulum (Vol.Ill, Auffgab.XVIII, p. 187). These differing examples clearly show that ancient ideas linger on alongside the new ones which — thanks to the selection we make when depicting the progress of science — are often believed to have been completely ousted long since.

    Google Scholar 

  80. William Gilbert, De Mundo Nostro Sublunari Philosophia Nova. (Opus posthumum) Amstelodami 1651, Bk.II,ch. 10, pp.96, 154.

    Google Scholar 

  81. Gilbert, De Mundo Nostro Sublunari Philosophia Nova, Bk.II, ch.10, pp.32, 142, 147, 154, 164.

    Google Scholar 

  82. Gilbert, De Mundo Nostro Sublunari Philosophia Nova, pp.47, 48, 61. See also Gilbert, De Magnete, Magneticisque Corporibus, et de Magnete Tellure, Physiologia Nova, Londini 1600, pp.29, 65, 216, 219.

    Google Scholar 

  83. Francis Bacon, Sylva Sylvarum or a Natural History (1627), cent.I, 33.Quoted from Bacon, Works, Spedding, Ellis and Heath ed., London 1854, Vol.11, p.354.

    Google Scholar 

  84. Bacon, Sylva Sylvarum.

    Google Scholar 

  85. Bacon, Novum Organum (1620), Pt.II, XXXV (Works I, p.292.)

    Google Scholar 

  86. Mersenne, Harmonie Universelle, Paris 1636, Bk.II, prop.XII, pp. 128–129.

    Google Scholar 

  87. Mersenne, Novum Organum (1620), Bk.III, prop.XX, coroll. 1, p.208.

    Google Scholar 

  88. Mersenne, Novum Organum (1620), Bk.III, prop.XX, coroll.3, p.209.

    Google Scholar 

  89. Mersenne, Novum Organum (1620), p.209.

    Google Scholar 

  90. Mersenne, Novum Organum (1620).

    Google Scholar 

  91. Isaac Beeckman, Journal, 23 Nov - 26 Dec 1618, C.de Waard éd. La Haye 1939, Vol.1, p.264.

    Google Scholar 

  92. Beeckman, Journal (1614), (De Waard Vol.1, p.44).

    Google Scholar 

  93. Cf E.J. Dijksterhuis, Val en Worp, Groningen 1924, pp.311–313.

    Google Scholar 

  94. Cf Dijksterhuis, ibidem, p.375.

    Google Scholar 

  95. Isaac Newton, Philosophiae Naturalis Principia Mathematica, Londini 1687, Bk.I, sect.l 1. p.162. Cf: ‘I shall therefore… treat of the motion of bodies attracting each other, considering the centripetal forces as attractions; though perhaps physically speaking, they may more truly be called impulses’ (ibidem).

    Google Scholar 

  96. Philosophiae Naturalis Principia Mathematica, 3rd edn. London 1726, Bk.I, sect.l 1. Scholium. Quoted from: —, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World, F. Cajori ed., Berkeley 1947, p. 192.

    Google Scholar 

  97. Philosophiae Naturalis Principia Mathematica, 3rd edn. Bk.I, prop..LXXIV, theorem XXXIV (Cajori, p. 197).

    Google Scholar 

  98. Philosophiae Naturalis Principia Mathematica, 3rd edn. Bk.I, prop.LXXIII, theorem XXXIII (Cajori, p. 196). Cf. props.LXX and LXXII (Cajori, p. 193).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hooykaas, R. (1999). A Tunnel Through the Earth. In: Fact, Faith and Fiction in the Development of Science. Boston Studies in the Philosophy of Science, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9295-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9295-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5248-3

  • Online ISBN: 978-94-015-9295-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics