Skip to main content

Identifying Coherent Structures in the Marine Atmospheric Boundary Layer

  • Chapter
Air-Sea Exchange: Physics, Chemistry and Dynamics

Abstract

Analysis of the various roles of individual phenomena in Marine Atmospheric Boundary Layer (MABL) processes depends on the ability to detect these phenomena and to isolate their contribution to the evolving three-dimensional thermodynamic and kinematic fields. Because many MABL phenomena take the form of coherent structures in the turbulence field, much of this task becomes one of identifying and distinguishing the different coherent structure types that occur in the MABL. This task can be straightforward if none of the coherent structures overlap significantly in space, time, or scale; if each is well enough understood a priori , then tailored detection algorithms can be easily developed. In contrast, the task of identifying and separating coherent structures in the turbulence field becomes quite complicated if the structures overlap in space, time, or scale. Likewise, tailored detection algorithms cannot be developed for poorly understood or heretofore unknown structures. To reduce these problems, we develop a multi-pronged statistical approach that makes synergistic use of Principal COmponents Analysis, Fourier Spectral Analysis, and Fractal Dimension Analysis. Once identified by this approach, the contribution of each coherent structure type to MABL processes may be evaluated separately. In particular, the roles of each in the transport and in the generation of intermittency of air/sea fluxes may be identified and quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel, H. D. I., Brown, R., Sidorowich, J.J., Tsimring, L.S. (1993) The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. , 65, 1331–1392.

    Article  Google Scholar 

  • Albano, A. M., Muench, J., Schwartz, C., Mees, A.I., Rapp, P.E. (1988) Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A , 38, 3017–3026.

    Article  Google Scholar 

  • Brümmer, B. (1985) Structure, dynamics and energetics of boundary-layer rolls from KonTur aircraft observations. Beitr. Phys. Atmosph. , 58, 237–254.

    Google Scholar 

  • Burroughs, G. E. R., Miller, H. W. L. (1961) The rotation of principal components. Brit. J. Stat. Pyschol. , 14, 35–49.

    Article  Google Scholar 

  • Buell, C. E. (1975) The topography of empirical orthogonal functions. Fourth Conference on Probability and Statistics in Atmospheric Sciences, Preprints , Tallahassee, Fl., American Meteorological Society, 178–193.

    Google Scholar 

  • Cattell, R.B. (1966) The scree test for the number of factors. Multivariate Behavioral Research , 1, 245–276.

    Article  Google Scholar 

  • Cattell, R. B., Dickman, K. (1962) A dynamical model of physical influences demonstrating the necessity of oblique simple structure. Psychol. Bull. , 59, 389–400.

    Article  Google Scholar 

  • Chou, S. H., Zimmermann, J. (1989) Bivariate conditional sampling of buoyancy flux during an intense cold-air outbreak. Boundary-Layer Meteor. , 46, 93–112.

    Article  Google Scholar 

  • Dunteman, G. H. (1989) Principal Component Analysis. New York: Sage Publications.

    Google Scholar 

  • Edson, J.B., Hinton, A.A., Prada, K.E., Hare, J.E., Fairall, C.W. (1998) Direct covariance flux estimates from mobile platforms at sea, J. Atmos. Oceanic Tech. , 15, 547–562.

    Article  Google Scholar 

  • Farmer, J. D., Ott, E., Yorke, J.A. (1983) The dimension of chaotic attractors. Physica , 7D, 153–180.

    Google Scholar 

  • Fraser, A.M., Swinney, H.L. (1986) Independent coordinates for strange attractors from mutual information. Phvs. Rev. A. , 33, 1134–1140.

    Article  Google Scholar 

  • Grassberger, P., Procaccia, I. (1983) Measuring the strangeness of strange attractors. Physica , 9D, 189–208.

    Google Scholar 

  • Greenhut, G. K., Khalsa, S.J.S. (1987) Convective elements in the marine atmospheric boundary layer. Part I: conditional sampling statistics. J. Clim. and Appl. Meteo. , 26, 813–822.

    Article  Google Scholar 

  • Haack, T., Shirer, H.N. (1992) Mixed convective-dynamic roll vortices and their effects on initial wind and temperature profiles. J. Atmos. Sci. , 49, 1181–1201.

    Article  Google Scholar 

  • Hare, J. E., Hara, T., Edson, J.B., Wilczak, J.M. (1997) A similarity analysis of the structure of airflow over surface waves. J. Phys. Ocean. , 27, 1018–1037.

    Article  Google Scholar 

  • Henderson, H. W., Thomson, D.W. (1995) Fractal dimensions of remotely sensed atmospheric signals. Proc. Second Experimental Chaos Conference , Oct. 6–8, 1993, Arlington, VA, W. Ditto, L. Pecora, M. Schlesinger, M. Spano and S, Vohra (Eds.), World Scientific Publishing Co.. Singapore, 349–355.

    Google Scholar 

  • Henderson, H. W., Wells, R. (1988): Obtaining attractor dimensions from meteorological time series. Adv. Geophys. , 30, 205–237.

    Article  Google Scholar 

  • Hendrickson, A. E., White, P.O. (1964) Promax: a quick method to oblique simple structure. British J. of Statistical Psychology , 17, 65–70.

    Article  Google Scholar 

  • Higuchi, T. (1988) Approach to an irregular time series on the basis of the fractal theory. Phvsica , 31D, 277–283.

    Google Scholar 

  • Hristov, T., Friehe, C. (1998) Linear time-invariant compensation of cup anemometer inertia. J. Atmos. Oceanic Tech , submitted.

    Google Scholar 

  • Kaimal, J.C., Wyngaard, J.C., Haugen, D.A., Cote, O.R., Izumi, Y., Caughy, S.J., Readings, C.J. (1976) Turbulence structure in the convective boundary layer. J. Atmos. Sci. , 33, 2152–2169.

    Article  Google Scholar 

  • Kinsman, B. (1965) Wind Waves. Prentice-Hall, Englewood Cliffs, NJ, 676 pp.

    Google Scholar 

  • Kropfli, R. A., Kohn, N.M. (1978) Persistent horizontal rolls in the urban mixing layer as revealed by dual-Doppler radar. J. Appl. Meteor. , 17, 669–676.

    Article  Google Scholar 

  • Academic Kundu, P.K.(1990) Fluid Mechanics. Press, Inc., San Diego, CA, 638 pp.

    Google Scholar 

  • Küttner, J. P. (1959) The band structure of the atmosphere. Tellus, 11 , 267–294.

    Article  Google Scholar 

  • Küttner, J. P. (1971) Cloud bands in the earth’s atmosphere. Tellus , 23, 404–425.

    Article  Google Scholar 

  • Kaiser, H. F. (1959) The Varimax criterion for analytic rotation in factor analysis. Psychometrika , 23, 187–200.

    Article  Google Scholar 

  • LeMone, M. A. (1973) The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci. , 30, 1077–1091.

    Article  Google Scholar 

  • LeMone, M. A. (1983) Momentum transport by a line of cumulonimbus. J. Atmos. Sci. , 40, 1815–1834.

    Article  Google Scholar 

  • Lenschow, D.H., Stephens, P.L. (1980) The role of thermals in the convective boundary layer. Boundarv-Layer Meteorol. , 19, 509–532.

    Article  Google Scholar 

  • Lenschow, D. H., Stephens, P.L. (1982) Mean vertical velocity and turbulence intensity inside and outside thermals. Atmos. Envir. , 16, 761–764.

    Article  Google Scholar 

  • Lorenz, E. N. (1963) Deterministic nonperiodic flow. J. Atmos. Sci. , 20, 130–141.

    Article  Google Scholar 

  • Lorenz, E. N. (1991) Dimension of weather and climate attractors. Nature , 353, 241–244.

    Article  Google Scholar 

  • Madden, R. A., Julian, P.R. (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. , 29, 1109–1123.

    Article  Google Scholar 

  • Mandelbrot, B. (1982) The Fractal Geometry of Nature. W. H. Freeman and Co., San Francisco, 468 pp.

    Google Scholar 

  • Mellor, G. L. (1996) Introduction to Physical Oceanography. Springer-Verlag, New York, 260 pp.

    Google Scholar 

  • Miller, S., Friehe, C., Hristov, T., Edson, J. (1997) Wind and turbulence profiles in the surface layer over the ocean. Preprints, 12th Symposium on Boundary Layers and Turbulence , American Meteorological Society, Vancouver, BC, Canada, 308–309.

    Google Scholar 

  • Moeng, C.-H. (1984) A large eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. , 41, 2052–2062.

    Article  Google Scholar 

  • Nishiyama, R. T., Bedard Jr., A.J. (1991) A`quad-disc’ static pressure probe for measurement of adverse atmospheres: With a comparative review of static pressure probe designs. Rev. Sci. Instrum. , 62, 2193–2204.

    Article  Google Scholar 

  • Nucciarone, J.J., Young, G.S. (1991) Aircraft measurements of turbulence spectra in the marine stratocumulus topped boundary layer. J. Atmos. Sci. , 48, 2382–2392.

    Article  Google Scholar 

  • Phillips, O. M. (1977) The Dynamics of the Upper Ocean, 2nd ed., Cambridge University Press, 336 pp.

    Google Scholar 

  • Richman, M.(1986) Rotation of principal components. J. Climatol. , 6, 293–335.

    Article  Google Scholar 

  • Rinker, D. K. Jr., Young, G.S. (1996) Use of obliquely rotated principal component analysis to identify coherent structures. Boundary-Layer Meteorology. , 80, 19–47.

    Article  Google Scholar 

  • Rishel, J. (1998) A methodology for objectively identifying coherent structures within the marine atmospheric surface layer. MS Thesis, Penn State University, 51 pp.

    Google Scholar 

  • Rogers, A. N. (1997) Chaotic marine atmospheric boundary layer structures isolated and identified using statistical and temporal analysis techniques. MS Thesis, Penn State University, 45 pp.

    Google Scholar 

  • Rogers, A.N., Shirer, H.N., Young, G.S., Suciu, L., Wells, R., Edson, J.B., Wetzel, S.W., Friehe, C., Hristov, T., Miller, S. (1997) Using the chaotic behavior of the time series observed on FLIP to identify MABL coherent structures. Preprints, 12th Symposium on Boundary Layers and Turbulence , American Meteorological Society, Vancouver, BC, Canada, 243–244.

    Google Scholar 

  • Rohrbach, J.W. (1996) The dynamics and three-dimensional structure of the coherent eddies of the boundary layer investigated through principal component analysis. MS Thesis, Penn State University, 86 pp.

    Google Scholar 

  • Schumann, U., Moeng, C.-H. (1991) Plume budgets in clear and cloudy convective boundary layers. J. Atmos. Sci. 48, 1758–1770.

    Article  Google Scholar 

  • Shirer, H. N., Fosmire, C., Wells, R., Suciu, L. (1997) Estimating the correlation dimension of atmospheric time series. J. Atmos. Sci. , 54, 211–229.

    Article  Google Scholar 

  • Smith, L. A. (1988) Intrinsic limits on dimension calculations. Phys. Lett. A , 133, 283–288.

    Article  Google Scholar 

  • Sorbjan, Z. (1989) Structure of the Atmospheric Boundary Layer. Englewood Cliffs, NJ: Prentice Hall, Inc., 317 pp.

    Google Scholar 

  • Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Boston, 666 pp.

    Book  Google Scholar 

  • Suciu, L. (1996) Estimating the capacity dimension of time series produced by Large Eddy Simulation. MS Thesis, Penn State University, 70 pp.

    Google Scholar 

  • Takens, F. (1981) Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick 1980 , D. A. Rand and L.-S. Young, Eds., Lecture Notes in Mathematics, Vol. 898, Springer-Verlag, 366–381.

    Chapter  Google Scholar 

  • Theiler, J. (1988) Lacunarity in a best estimator of fractal dimension. Phys. Lett. A , 133, 195–200.

    Article  Google Scholar 

  • Theiler, J. (1990) Estimating fractal dimension. J. Opt. Soc. Am. , 7, 1055–1073.

    Article  Google Scholar 

  • Tsonis, A. A., Elsner, J.B., Georgakakos, K.P. (1993) Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation. J. Atmos. Sci. , 50, 2549–2555.

    Article  Google Scholar 

  • Turcotte, D. L. (1988) Fractals in fluid mechanics. Ann. Rev. Fluid Mech. , 20, 5–16.

    Article  Google Scholar 

  • Weijers, E. P., van Delden, A., Vugts, H.F., Meesters, A.G.C.A. (1995) Characteristics of convective turbulence in the surface layer investigated by principal component analysis. J. Appl. Meteor. , 34, 528–541.

    Article  Google Scholar 

  • Wilczak, J. M. (1984) Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: velocity and temperature structure. J. Atmos. Sci. , 41, 3537–3550.

    Article  Google Scholar 

  • Wilczak, J. M., Tillman, J.E. (1980) The three-dimensional structure of convection in the atmospheric surface layer. J. Atmos. Sci. , 37, 2425–2443.

    Article  Google Scholar 

  • Williams, A. G., Hacker, J.M. (1992) The composite shape and structure of coherent eddies in the convective boundary layer. Boundary Layer Meteor. , 61, 213–245.

    Article  Google Scholar 

  • Winstead, N.S. (1995) Diagnosing chaotic behavior in time series produced by large eddy simulation. MS Thesis, Penn State University, 61 pp.

    Google Scholar 

  • Wyngaard, J. C., Siegel, A., Wilczak, J.M. (1994) On the response of a turbulent-pressure probe and the measurement of pressure transport. Bound.-Layer Meteor. , 69, 379–396.

    Article  Google Scholar 

  • Young, G.S. (1987) Mixed layer spectra from aircraft measurements. J. Atmos. Sci. , 44, 1251–1256.

    Article  Google Scholar 

  • Young, G. S. (1988a) Convection in the atmospheric boundary layer. Earth-Science Reviews , 25, 179–198.

    Article  Google Scholar 

  • Young, G. S. (1988b) Turbulence structure of the convective boundary layer. Part I: variability and normalized turbulence statistics. J. Atmos. Sci. , 45, 719–726.

    Article  Google Scholar 

  • Young, G. S. (1988c) Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J. Atmos. Sci., 45, 727–735.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shirer, H. et al. (1999). Identifying Coherent Structures in the Marine Atmospheric Boundary Layer. In: Geernaert, G.L. (eds) Air-Sea Exchange: Physics, Chemistry and Dynamics. Atmospheric and Oceanographic Sciences Library, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9291-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9291-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5308-4

  • Online ISBN: 978-94-015-9291-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics