Skip to main content

Incremental Unknowns: A Tool for Large Eddy Simulations?

  • Conference paper
Book cover Direct and Large-Eddy Simulation III

Part of the book series: ERCOFTAC Series ((ERCO,volume 7))

  • 382 Accesses

Abstract

Subgrid-scale models based on incremental unknowns (IU) are proposed and investigated for LES of incompressible homogeneous turbulence. The aim of this approach is to derive an estimation procedure of scales (IU) smaller than the resolved ones. The IU components are solutions of an evolution equation. The SGS stress tensor is then explicitly computed. The SGS force is finally modified by phase correction procedures in order to enhance SGS dissipation. A good level of correlation between modeled and exact SGS force, as well as SGS energy transfer, is obtained. The IU models predict the right amount of SGS dissipation. A good agreement between LES results and filtered DNS is noted. In the case of decaying turbulence, IU models perform better than the dynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardina, J., Ferziger, J. H. and Reynolds, W. C. (1983) Improved turbulence models based on large eddy simulation of homogeneous incompressible turbulence, Stanford University, TF-19.

    Google Scholar 

  • Bouchon F. (1999) Modèles sous-mailles et schémas multi-niveaux. Application à la simulation des grandes échelles d’écoulements turbulents, Thèse de l’Université Blaise Pascal (Clermont-Ferrand 2).

    Google Scholar 

  • Clark, R. A., Ferziger, J. H. and Reynolds, W. C. (1979) Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech 91, p. 1.

    Article  ADS  MATH  Google Scholar 

  • Domaradzki, J. A., Liu, W. and Brachet, M. E. (1993) An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence, Phys. Fluids A 5, p. 1747.

    Google Scholar 

  • Domaradzki, J. A. and Loh, K. (1998) The subgrid-scale estimation model in the physical space representation, to appear in Phys. Fluids..

    Google Scholar 

  • Domaradzki, J. A. and Saiki, E. M. (1997) A subgrid-scale model based on the estimation of unresolved scales of turbulence,Phys. Fluids, 9 (7), pp. 2148–2164.

    Article  ADS  Google Scholar 

  • Dubois, T., Jauberteau, F. and Temam, R. (1999) Dynamic multilevel methods and the numerical simulation of turbulence, Cambridge University Press.

    Google Scholar 

  • Kerr, R. M., Domaradzki, J. A. and Barbier, G. (1996) Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence, Phys. Fluids 8, p. 197.

    Article  ADS  MATH  Google Scholar 

  • Foias, C., Manley, O. P. and Temam R. (1988) Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math. Mod. and Num. Anal. (M2AN), 22 (1), pp. 93–114.

    MathSciNet  MATH  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids, A 3(7), pp. 1760–1765.

    Google Scholar 

  • Ghosal, S., Lund, T. S., Moin, P., and Akselvoll, K. (1995) A dynamic localization model for large-eddy simulation of turbulent flows J. Fluid Mech 286, pp. 229–255.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lilly, D. K. (1967) Proc. IBM Scientific Computing Symposium on Environmental Sciences. Yorktown Heights, N.Y., p. 195.

    Google Scholar 

  • Lilly, D. K. (1992) A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A4(3), pp. 633–635.

    Google Scholar 

  • Liu, S., Meneveau, C. and Katz, J. (1994) On the properties of similarity subgrid-scale models as deduced form measurements in a turbulent jet, J. Fluid Mech 275, p. 83.

    Article  ADS  Google Scholar 

  • O’Neil, J. and Meneveau, C. (1997) Subgrid-scale stresses and their modeling in a turbulent wake, J. Fluid Mech 349, p. 253.

    Article  MathSciNet  ADS  Google Scholar 

  • Smagorinsky, J. (1963) General circulation experiments with the primitive equations, Mon. Weath. Rev, 93, p. 99.

    Article  ADS  Google Scholar 

  • Wray, A. A. (1998) in A selection of test cases for the evaluation of large-eddy simulations of turbulent flows, AGARD Advisory report, 345, pp. 63–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bouchon, F., Dubois, T. (1999). Incremental Unknowns: A Tool for Large Eddy Simulations?. In: Voke, P.R., Sandham, N.D., Kleiser, L. (eds) Direct and Large-Eddy Simulation III. ERCOFTAC Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9285-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9285-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5327-5

  • Online ISBN: 978-94-015-9285-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics