Skip to main content

Shapes and interactions of polysaccharide chains

  • Chapter
Carbohydrates

Abstract

Polysaccharides form the most abundant and diverse family of biopolymers. With several hundreds of known examples they offer a great diversity of chemical structures, ranging from simple linear homopolymers to branched heteropolymers, having repeating units of up to octasaccharides. Simple polysaccharides, with a repeating structure composed of monosaccharides, are used to store energy, as in starch, glycogen, locust bean gum and guar gum. Carbohydrate functions are not limited to the storage or production of energy. Cellulose, a simple polymer of glucose, is an essential constituent of plant cell walls. It generates hard and solid elements in the form of tough fibers. The plasticity of the cell wall is further regulated via hydrated cross-linked three-dimensional networks where polysaccharides such as pectins play a key function. In marine species, carbohydrate polymers such as agar, alginates and carrageenans play a similar role. Other polysaccharides create viscous extracellular layers around bacteria. In the animal kingdom, the family of glycosaminoglycans (hyaluronate, chondroitin sulfate, derma-tan sulfate etc.) plays a key role in governing the solution properties of some physiological fluids as well as participating in the structural buildup of the intercellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott, S., Fulmer, A., Scott, W.E. et al. (1974) The agarose double-helix and its function in agarose gel structure. Journal of Molecular Biology, 90, 269–84.

    Article  CAS  Google Scholar 

  • Brant, D.A. (1976) Conformational theory applied to polysaccharide structure. Quarterly Reviews of Biophysics, 9, 527–96.

    Article  CAS  Google Scholar 

  • Braudo, E.E., Soshinsky, A.A., Yuryev, V.P. and Tolstoguzov, V.B. (1992) The interaction of polyuronides with calcium ions. 1: Binding isotherms of calcium ions with pectic substances. Carbohydrate Polymers, 18, 165–9.

    Article  CAS  Google Scholar 

  • Chandrasekharan, R. (1997) Molecular architecture of polysaccharide helices in oriented fibres. Adv. Carb. Chem. Biochem., 52, 311–439.

    Article  Google Scholar 

  • Chanzy, H., Roche, E. and Vuong, R. (1971) Electron diffraction of cellulose triacetate single crystals. Kolloid-Zeitschrift & Zeitschrift fib Polymere, 248, 1034–5.

    Article  CAS  Google Scholar 

  • Clark, A.H. and Ross-Murphy, S.B. (1987) Structural and mechanical properties of biopolymer gels. Advances in Polymer Science, 83, 57–192.

    Article  CAS  Google Scholar 

  • Clark, A.H., Richardson, R.K., Ross-Murphy, S.B. and Stubbs, J.M. (1983) Structural and mechanical properties of agar/gelatin co-gels. Small-deformation studies. Macromolecules, 16, 1367–74.

    Article  CAS  Google Scholar 

  • Cremer, D. and Pople, J.A. (1975) Molecular orbital theory of the electronic structure of organic compounds. XXIII. Pseudorotation in saturated five-membered ring compounds. Journal of the American Chemical Society, 97, 1358–67.

    Article  CAS  Google Scholar 

  • Darby, R. (1976) Viscoelastic Fluids: An Introduction to Their Properties and Behavior, Marcel Dekker, New York.

    Google Scholar 

  • Deslandes, Y., Marchessault, R.H. and Sarko, A. (1980) Triple-helical structure of (1-i 3)-Ăź-Dglucan. Macromolecules, 13, 1466–71.

    Article  CAS  Google Scholar 

  • Engelsen, S.B., Cros, S., Mackie, W. and PĂ©rez, S. (1996) A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers, 39, 417–33.

    Article  CAS  Google Scholar 

  • French, A.D. (1988) Rigid-and relaxed-residue conformational analyses of cellobiose using the computer program MM2. Biopolymers, 27, 1519–25.

    Article  CAS  Google Scholar 

  • French, A.D. and Murphy, V.G. (1977) Intramolecular changes during polymorphic transformations of amylose. Polymer, 18, 489–94.

    Article  CAS  Google Scholar 

  • French, A.D., Tran, V.H. and PĂ©rez, S. (1990) Conformational analysis of a disaccharide (cellobiose) with the molecular mechanics program (MM2), in Computer Modeling of Carbohydrate Molecules (eds A.D. French and J.W. Brady), ACS Symposium Series 430, American Chemical Society, Washington, DC, pp. 191–212.

    Chapter  Google Scholar 

  • Gagnaire, D., PĂ©rez, S. and Tran, V.H. (1982) Configurational statistics of single chains of clinked glucans. Carbohydrate Polymers, 2, 171–91.

    Article  CAS  Google Scholar 

  • Goycoolea, F.M., Richardson, R.K., Morris, E.R. and Gidley, M.J. (1995) Effect of locust bean gum and konjac glucomannan on the conformation and rheology of agarose and xcarrageenan. Biopolymers, 36, 643–58.

    Article  CAS  Google Scholar 

  • Grant, G.T., Morris, E.R., Rees, D.A. et al. (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letter, 32, 195–206.

    Article  CAS  Google Scholar 

  • Ha, S.N., Madsen, L.J. and Brady, J.W. (1988) Conformational analysis and molecular dynamics simulations of maltose. Biopolymers, 27, 1927–52.

    Article  CAS  Google Scholar 

  • Hermansson, A.-M. (1989) Rheological and microstructural evidence for transient states during gelation of kappa-carrageenan in the presence of potassium. Carbohydrate Polymers, 10, 163–81.

    Article  CAS  Google Scholar 

  • Huggins, J.S. and Benoit H.C. (1994) Polymers and Neutron Scattering, Oxford Sciences, Oxford.

    Google Scholar 

  • Hui, S.W. and Parsons, D.F. (1974) Electron diffraction of wet biological membranes. Science, 184, 77–8.

    Article  CAS  Google Scholar 

  • Imberty, A. and PĂ©rez, S. (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers, 27, 1205–21.

    Article  CAS  Google Scholar 

  • Imberty, A., Chanzy, H., PĂ©rez, S. et al. (1988) New three-dimensional structures for A-type starch. Journal of Molecular Biology, 201, 365–78.

    Article  CAS  Google Scholar 

  • Imberty, A., Tran, V.H. and PĂ©rez, S. (1989) Relaxed potential energy surfaces of N-linked oligosaccharides: the mannose-a(1 — 3)-mannose case. Journal of Computational Chemistry, 11, 205–16.

    Article  Google Scholar 

  • IUPAC—IUB Joint Commission on Biochemical Nomenclature: Nomenclature of Carbohydrates. Pure Appl. Chem. (1996) 68, 1919; Carbohydr. Res. (1977) 297, 1–92.

    Google Scholar 

  • James D.W., Jr, Preiss, J. and Elbein, A.D. (1985) Biosynthesis of polysaccharides, in The Polysaccharides, Vol. 3 (ed. G.O. Aspinall ), Academic Press, New York, pp. 107–207.

    Google Scholar 

  • Jeffrey, G.A. and Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer, Berlin.

    Book  Google Scholar 

  • Kakudo, M. and Kasai, K. (1972) X-ray Diffraction by Polymers, Elsevier Publishing Company, Amsterdam, pp. 303–21.

    Google Scholar 

  • Lapasin, R. and Pricl, S. (1995) Rheology of Industrial Polysaccharides: Theory and Applications, Blackie Academic & Professional, London.

    Book  Google Scholar 

  • Lundin, L. and Hermansson, A.-M. (1995) Supramolecular aspects of xanthan-locust bean gum gels based on rheology and electron microscopy. Carbohydrate Polymers, 26, 129–40.

    Article  CAS  Google Scholar 

  • Mannion, R.O., Melia, C.D., Launay, B. et al. (1992) Xanthan/locust bean gum interactions at room temperature. Carbohydrate Polymers, 19, 91–7.

    Article  CAS  Google Scholar 

  • Marchessault, R.H. and Sundararajan, P.R. (1983) Cellulose, in The Polysaccharides, Vol. 2 (ed. G.O. Aspinall ), Academic Press, New York, pp. 11–95.

    Google Scholar 

  • Matricardi, V.R., Moretz, R.C. and Parsons, D.F. (1972) Electron diffraction of wet proteins. Catalase. Science, 177, 268–70.

    Article  CAS  Google Scholar 

  • Miles, M.J., Morris, V.J. and Ring, S.G. (1984) Some recent observations on the retrogradation of amylose. Carbohydrate Polymers, 4, 73–7.

    Article  CAS  Google Scholar 

  • Mitchell, J.R. (1976) Rheology of gels. Journal of Texture Studies, 7, 313–39.

    Article  CAS  Google Scholar 

  • Morris, E.R. and Norton, I.T. (1983) Polysaccharide aggregation in solutions and gels, in Aggregation Processes in Solution (eds. E. Wyn-Jones and J. Gormally ), Elsevier, Amsterdam, pp. 549–93.

    Google Scholar 

  • Morris, E.R., Cutler, A.N., Ross-Murphy, S.B. et al. (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers, 1, 5–21.

    Article  CAS  Google Scholar 

  • Morris, E.R., Rees, D.A., Robinson, G. and Young, G.A. (1980) Competitive inhibition of interchain interactions in polysaccharide systems. Journal of Molecular Biology, 138, 363–74.

    Article  CAS  Google Scholar 

  • Morris, V.J., Franklin, D. and I’Anson, K. (1983) Rheology and microstructure of dispersions and solutions of the microbial polysaccharide from Xanthomonas campestris (xanthan gum). Carbohydrate Research, 121, 13–30.

    Article  CAS  Google Scholar 

  • Parker, A., Brigand, G., Miniou, C. et al. (1993) Rheology and fracture of mixed i-and xcarrageenan gels: two-step gelation. Carbohydrate Polymers, 20, 253–62.

    Article  CAS  Google Scholar 

  • PĂ©rez, S. (1978) Analyse cristallographique de structures polymères: Conception et critique de nouveaux systèmes d’information, DSc. Thesis, University of Grenoble.

    Google Scholar 

  • PĂ©rez, S. and Chanzy, H. (1989) Electron crystallography of linear polysaccharides, Journal of Electron Microscopy Technique, 11, 280–5.

    Article  Google Scholar 

  • PĂ©rez, S. and Delage, M.M. (1991) A database of three-dimensional structures of monosaccharides from molecular mechanics calculations. Carbohydrate Research, 212, 253–9.

    Article  Google Scholar 

  • Picullel, L., Nilsson, S. and Muhrbeck, P. (1992) Effects of small amounts of kappa-carrageenan on the rheology of aqueous iota-carrageenan. Carbohydrate Polymers, 18, 199–208.

    Article  Google Scholar 

  • Rao, V.S.R., Sundararajan, P.R., Ramakrishnan, C. and Ramachandran, G.N. (1967) Conformational studies of amylose, in Conformation in Biopolymers. Vol. 2 (ed. G.N. Ramachandran ), Academic Press, London, pp. 721–37.

    Google Scholar 

  • Rees, D.A., (1977) Polysaccharide Shapes ( Outline Studies in Biology Series ), Chapman & Hall, London.

    Book  Google Scholar 

  • Rees, D.A., Morris, E.R., Thom, D. and Madden, J.K. (1982) Shapes and interactions of carbohydrate chains, in The Polysaccharides, Vol. 1 (ed. G.O. Aspinall ), Academic Press, New York, pp. 195–290.

    Google Scholar 

  • Ring, S.G. (1985) Observations on the crystallization of amylopectin from aqueous solution. International Journal of Biological Macromolecules, 7, 253–4.

    Article  CAS  Google Scholar 

  • Robijn, G.W., Imberty, A., van den Berg, D.J.C. et al. (1996) Predicting helical structures of the exopolysaccharide produced by Lactobacillus Sake. Carbohydr. Res., 288, 57–74.

    CAS  Google Scholar 

  • Stevens, E.S. and Sathyanarayana, B.K. (1987) A semi-empirical theory of saccharide optical activity. Carbohydr. Res., 166, 181–93.

    Article  CAS  Google Scholar 

  • Segeren, A.J.M., Boskamp, J.V. and van den Tempel, M. (1974) Rheological and swelling properties of alginate gels. Faraday Discussions of the Chemical Society, 57, 255–62.

    Article  CAS  Google Scholar 

  • Smidsrad, O. (1974) Molecular basis for some physical properties of alginates in the gel state. Faraday Discussions of the Chemical Society, 57, 263–74.

    Article  Google Scholar 

  • Smidsred, O. and Haug, A. (1972) Properties of poly(1,4-hexuronates) in the gel state. II. Comparison of gels of different chemical composition. Acta Chemica Scandinavica, 26, 79–88.

    Article  Google Scholar 

  • Smith, P.J.C. and Arnott, S. (1978) LALS: A linked-atom least-squares reciprocal-space refinement system incorporating stereochemical restraints to supplement sparse diffraction data. Acta Crystallographica, A34, 3–11.

    Article  Google Scholar 

  • Sugiyama, J., Vuong, R. and Chanzy, H. (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules, 7, 4168–75.

    Article  Google Scholar 

  • Taylor, K.A. and Glaeser, R.M. (1974) Electron diffraction of frozen hydrated protein crystals. Science, 186, 1036–7.

    Article  CAS  Google Scholar 

  • Taylor, K.J., Chanzy, H. and Marchessault, R.H. (1975) Electron diffraction for hydrated crystalline biopolymers: nigeran. Journal of Molecular Biology, 92, 165–7.

    Article  CAS  Google Scholar 

  • Tran, V.H., BulĂ©on, A., Imberty, A. and PĂ©rez, S. (1989) Relaxed potential energy maps of maltose. Biopolymers, 28, 679–90.

    Article  CAS  Google Scholar 

  • Tran, V.H. and Brady, J.W. (1990) Disaccharide conformational flexibility. I. An adiabatic potential energy map for sucrose. Biopolymers, 29, 961–76.

    Article  CAS  Google Scholar 

  • Tvaroska, I. and PĂ©rez, S. (1986) Conformational-energy calculations for oligosaccharides: a comparison of methods and a strategy of calculation. Carbohydrate Research, 149, 389–410.

    Article  CAS  Google Scholar 

  • Voragen, A.G.J., Pilnik, W., Thibault, J.-F. et al. (1995) Pectins, in Food Polysaccharides and Their Applications (ed. A.M. Stephen ), Marcel Dekker, New York, pp. 287–339.

    Google Scholar 

  • Watase M. and Arakawa, A. (1968) Rheological properties of hydrogels of agar-agar. III. Stress relaxation of agarose gels. Bulletin of the Chemical Society of Japan, 41, 1830–4.

    Article  CAS  Google Scholar 

  • Williams, D.E. (1969) A method of calculating molecular crystal structures. Acta Crystallographica, A25, 464–70.

    CAS  Google Scholar 

  • Woodcock, C. and Sarko, A. (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules, 13, 1183–7.

    Article  CAS  Google Scholar 

  • Zhang, J. and Rochas, C. (1990) Interactions between agarose and ic-carrageenans in aqueous solutions. Carbohydrate Polymers, 13, 257–71.

    Article  CAS  Google Scholar 

  • Zugenmaier, P. and Sarko, A. (1976) Packing analysis of carbohydrates and polysaccharides. IV. A new method for detailed crystal structure refinement of polysaccharides and its application to V-amylose. Biopolymers, 15, 2121–36.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

PĂ©rez, S., Kouwijzer, M. (1999). Shapes and interactions of polysaccharide chains. In: Finch, P. (eds) Carbohydrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9281-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9281-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4033-6

  • Online ISBN: 978-94-015-9281-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics