Skip to main content

Developmental and Structural Aspects of Root Organogenesis

  • Chapter
Morphogenesis in Plant Tissue Cultures

Abstract

The study on adventitious root formation is not only to throw light on the mechanism of plant organogenesis but also to provide information to improve the techniques for clonal multiplication of plants by conventional methods as well as in tissue cultures. In tissue cultures various explants derived from structurally, developmentally and physiologically diverse plant tissues can be used for de novo root organogenic experiments. Another advantage of this experimental system (tissue culture) is that the bulk of the cells which are structurally not involved in root organogenesis can be eliminated by selecting an explant comprising of the exact region where roots are formed. For example, the explants for root organogenesis can be minimized to tiny slices (Van der Krieken et al., 1993) or microcallus (Kim et al., 1995) and examined to determine the exact region (Gutmann et al., 1996; Soh et al., 1998). However, in recent years the field of adventitious root organogenesis in tissue culture systems has been overshadowed by studies on shoot organogenesis (Moncousin, 1991), even though in conventional propagation the induction of root organogenesis was more actively studied than shoot organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbacher RA, Schiefelbein JW & Benfey PN (1994) The genetic and molecular basis of root development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45: 25–45.

    Article  CAS  Google Scholar 

  • Altamura MM, Capitani F, Serafini-Fracassini D, Torrigiani P &; Falasca G (1991a) Root histogenesis from tobacco thin cell layers. Protoplasma 161: 31–42.

    Article  Google Scholar 

  • Altamura MM, Torrigiani P, Capitani F, Scaramagli S & Bagni N (1991b) De novo root formation in tobacco thin layers is affected by inhibition of polyamine biosynthesis J. Exp. Bot. 42: 1575–1582.

    Article  CAS  Google Scholar 

  • Altamura MM & Capitani F (1992) The role of hormones on morphogenesis of thin layer explants from normal and transgenic tobacco plants. Physiol. Plant. 84: 555–560.

    Article  CAS  Google Scholar 

  • Apter RC, Davies FT Jr & McWilliams EL (1993a) In vitro and ex vitro adventitious root formation in Asian jasmine (Trachelospermum asiaticum). I. Comparative morphology. J. Amer. Soc. Hort. Sci. 118: 902–905.

    Google Scholar 

  • Apter RC, Davies FT Jr & McWilliams EL (1993b) In vitro and ex vitro adventitious root formation in Asian jasmine (Trachelospermum asiaticum). II. Physiolosical comparisons. J. Amer. Soc. Hort. Sci. 118: 906–909.

    Google Scholar 

  • Attfield EM & Evans PK (1991) Stages in the initiation of root and shoot organogenesis in cultured leaf explants of Nicotiana tabacum cv. Xanthi nc. J. Exp. Bot. 42: 59–63.

    Article  Google Scholar 

  • Bae HH, Cho DY, Kim SG, Soh W-Y & Seong RS (1994) Effects of 2,4-dichlorophenoxyacetic acid on adventitious root formation from callus of Bupleurum falcatum L. and its histological observation. Korean J. Plant Tiss. Cult. 21: 41–46.

    Google Scholar 

  • Baskin Tl, Betzner AS, Hoggart R, Cork A & Williamson RE (1992) Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19: 427–437.

    Article  Google Scholar 

  • Beakbane AB (1961) Structure of the plant stem in relation to adventitious rooting. Nature, London, 192: 954–955.

    Article  Google Scholar 

  • Beakbane AB (1969) Relationships between structure and adventitious rooting. Comb. Proc. Intern. Plant Prop. Soc. 19: 192–201.

    Google Scholar 

  • Biondi S, Daiz T, Iglesias I, Gamberini G & Bagni N (1990) Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78: 474–483.

    Article  Google Scholar 

  • Blakesley D, Weston GD & Hall JF (1991) The role of endogenous auxin in root initiation. Part 1: Evidence from studies on auxin application and analysis of endogenous levels. Plant Growth Regul. 10: 341–353.

    Article  CAS  Google Scholar 

  • Blazich FA & Heuser CW (1979b) The mung bean rooting bioassay: a re-examination. J. Amer. Soc. Hort. Sci. 104: 117–120.

    CAS  Google Scholar 

  • Blazich FA & Heuser CW (1979a) A histological study of adventitious root initiation in Mung bean cuttings. J. Amer. Soc. Hort. Sci. 104:63–67.

    Google Scholar 

  • Boureau E (1954) Anatomie vegetale, Vol. I. Presses Universitaires de France, Paris.

    Google Scholar 

  • Bressan OG, Kim YJ, Hyndman SE, Jasegawa PM & Bressan RA (1982) Factors affecting in vitro propagation of rose. J. Amer. Soc. Hort. Sci. 107: 979–990.

    Google Scholar 

  • Byrne JM, Collins KA, Cashau PF & Aung LH (1975) Adventitious root development from the seedling hypocotyl of Lycopersicon esculentum. Amer. J. Bot. 62: 731–737.

    Article  Google Scholar 

  • Cheng TY & Voqui TH (1977) Regeneration of Douglas fir plantlets through tissue culture. Science 198: 306–307.

    Article  CAS  PubMed  Google Scholar 

  • Choi YE & Soh W-Y (1995) Effects of growth regulators on somatic embryogenesis from ginseng zygotic embryos. Korean J. Plant Tiss. Cult. 22: 157–163.

    Google Scholar 

  • Choi YE & Soh W-Y (1997) Effect of ammonium ion on morphogenesis from cultured cotyledon explants of Panax ginseng. J. Plant Biol. 40: 21–26.

    Article  Google Scholar 

  • Cline MN & Neely D (1983) The histology and histochemistry of the wound-healing process in Geranium cuttings. J. Amer. Soc. Hort. Sci. 108: 496–502.

    Google Scholar 

  • Conner AJ & Falloon PG (1993) Osmotic versus nutritional effects when rooting in vitro asparagus minicrowns on high sucrose media. Plant Sci. 89: 101–106.

    Article  CAS  Google Scholar 

  • Crooks DM (1933) Histological and regenerative studies on the flax seedling. Bot. Gaz. 95: 209–239.

    Article  Google Scholar 

  • Davies FTJr, Lazarte JE & Joiner JN (1982) Initiation and development of roots in juvenile and mature leaf bud cuttings of Ficus pumila L. Amer. J. Bot. 69:804–811.

    Article  Google Scholar 

  • Davies FTJr & Hartmann HT (1988) The physiological basis of adventitious root formation. Acta. Hortic. 227: 113–120.

    Google Scholar 

  • Davis M J, Baker R & Hanan JJ (1977) Clonal multiplication of carnation by micropr — opagation. J. Amer. Soc. Hort. Sci. 102: 48–53.

    CAS  Google Scholar 

  • De Klerk G-J, Smulders R & Benschop M (1990) Basic peroxidases and rooting in microcuttings of Malus. Acta. Hort. 280: 29–36.

    Google Scholar 

  • Debergh DL & Maene LJ (1981) A scheme for commercial propagation of ornamental plants by tissue culture. Scientia Hort. 14: 335–345.

    Article  Google Scholar 

  • Deguchi M, Gyokusen K & Saito A (1994) Propagation of plantlets by the culture of multiple shoots and roots induced from callus originating in the cambium of Robinia hispida L. J. Jap. For. Soc. 76: 346–354.

    Google Scholar 

  • Dolan L, Duckett C, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S & Roberts K (1994) Clonal relations and patterning in the root epidermis of Arabidopsis. Development 120: 2465–2474.

    CAS  Google Scholar 

  • Doud SL & Carlson RF (1977) Effects of etiolation, stem anatomy and starch resources on root initiation of layered Malus clones. J. Amer. Soc. Hort. Sci. 102: 487–491.

    CAS  Google Scholar 

  • Eriksson T (1984) Progress and problems in tissue cultures of Norway spruce, Picea abies. Proc. Intern. Symp. In Vitro Prop. Forest Tree Species, Bologna, pp. 104–107.

    Google Scholar 

  • Fabijan D, Taylor JS & Reid DM (1981) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Action of gibberellins, cytokinins, auxins and ethylene. Physiol. Plant. 53: 589–597.

    Article  CAS  Google Scholar 

  • Fahn A (1990) Plant Anatomy (4th ed), Pergamon Press, Oxford, England.

    Google Scholar 

  • Favre JM (1973a) Effets corrélatifs de facteurs internes et externes sur la rhizogenèse de la Vigne cultivée in vitro. Thèse d’Etat. Cent. Sci. D’Orsay, Univ. Paris-Sud. pp. 89.

    Google Scholar 

  • Favre JM (1973b) Effets corrélatifs de facteurs internes et externes sur la rhizogenèse d’un clone de vigne (Vitis riparia × Vitis rupestris) cultivée in vitro. Rev. Gén. Bot. 80: 279–361.

    Google Scholar 

  • Favre JM (1973c) Divers aspects du rô le du bourgeon et des noeuds sur la rhizogenèse de la vigne cultivée in vitro. Rev. Cytol. Biol. Végét. Paris 37: 393–406.

    Google Scholar 

  • Fink S (1982) Adventitious root primordia- the cause of abnormally broad xylem rays in hard and softwoods. Intern. Asso. Wood Mat. 3: 31–38.

    Google Scholar 

  • Fjell I (1985a) Preformation of root primordia in shoots and root morphogenesis in Salix viminalis. Nord. J. Bot. 5. 357–376.

    Article  Google Scholar 

  • Fjell I (1985b) Morphogenesis of root cap in adventitious roots of Salix viminalis. Nord. J. Bot. 5: 555–573.

    Article  Google Scholar 

  • Friedman R, Altman A & Zamski E (1979) Adventitious root formation in bean hypocotyl cuttings in relation to IAA translocation and hypocotyl anatomy. J. Exp. Bot. 30: 769–777.

    Article  CAS  Google Scholar 

  • Galway M, Masucci J, Lloyd A, Walbot V, Davis R & Schiefelbein J (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev. Biol. 166: 740–754.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar Th & Coumans M (1987) Root formation. In: Bonga, J.M., and Durzan, D.J.(eds). Cell and Tissue Culture in Forestry. pp. 202–217. Martinus Nijhoff Pub., Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Gautheret RJ (1961) Action conjugueede l’acde gibberellique de la cinetine et de l’acide indole-acetique sue les tissus cultives “in vitro”, particulierement sur ceux de Topinambur. C.R. Acad. Sci. Paris 253: 1381–1385.

    CAS  Google Scholar 

  • Geneve RL, Hackett WP & Swanson BT (1988) Adventitious root initiation in de-bladed petioles from the juvenile and mature phases of English ivy. J. Amer. Soc. Hort. Sci. 113: 630–635.

    Google Scholar 

  • Geneve RL & Kester ST (1990) The initiation of somatic embryos and adventitious roots from developing zygotic embryo explants of Cercis canadensis L. cultured in vitro. Plant Cell, Tiss. Org. Cult. 22: 71–76.

    CAS  Google Scholar 

  • Geneve RL & Kester ST(1991) Polyamines and adventitious root formation in the juvenile and mature phase of English ivy. J. Exp. Bot. 42: 71–75.

    Article  CAS  Google Scholar 

  • Ginzburg C (1967) Organization of the adventitious root apex in Tamarix aphylla. Amer. J. Bot. 54: 4–8

    Article  Google Scholar 

  • Girouard RM (1967a) Initiation and development of adventitious roots in stem cuttings of Hedera helix. Anatomical studies of the juvenile growth phase. Can. J. Bot. 45: 1877–1882

    Article  Google Scholar 

  • Girouard RM (1967b) Initiation and development of adventitious roots in stem cuttings of Hedera helix. Anatomical studies of the mature growth phase. Can. J. Bot. 45:1883–1886.

    Article  Google Scholar 

  • Goldsmith NIEIM (1977) The polar auxin transport. Ann. Rev. Plant Physiol. 28: 439–478.

    Article  CAS  Google Scholar 

  • Gonzalez A, Sanchez Tames R & Rodriguez R (1991) Ethylene in relation to protein, peroxidase and oxidase activities during rooting in hazelnut cotyledons. Physiol. Plant. 83: 611–620.

    Article  CAS  Google Scholar 

  • Gonzalez A, Sanchez Tames R, Rodriguez R (1993) Adventitious root differentiation in hazelnut (Corylus avellana L.) cotyledons. Phyton 54: 119–126.

    Google Scholar 

  • Gronroos R & von Arnold S (1985) Initiation and development of wound tissue and roots on hypocotyl cuttings of Pinus sylvestris in vitro. Physiol. Plant. 64: 393–401.

    Article  Google Scholar 

  • Grout BWW & Aston MJ (1977) Tranplanting of cauliflower plants regenerated from meristem culture. I. Water loss and water transfer related to changes in leaf wax and to xylem regeneration. Hort. Res. 17: 1–7.

    Google Scholar 

  • Gurel E & Wren MJ (1995) In vitro development from leaf explants of sugar beet (Beta vulgaris L.) rhizogenesis and the effect of sequential exposure to auxin and cytokinin. Ann. Bot 75: 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Gutmann N, Charpentier JP, Doumas P & Jay-Allemand C (1996) Histological investigation of walnut cotyledon fragments for a better understanding of in vitro adventitious root initiation. Plant Cell Rep. 15: 345–349.

    Article  CAS  Google Scholar 

  • Haissig BE (1970) Preformed adventitious root initiation in brittle willow grown in a controlled environment. Can. J. Bot. 48: 2309–2312.

    Article  Google Scholar 

  • Haissig BE (1986) Metabolic processes in adventitious rooting. In: Jockson, M.B. (ed.) New Root Formation in Plant and Cuttings. pp. 141–189. Martinus NijhoffPub., Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Halperin W (1966) Alternative morphogenetic events in cell suspensions. Amer. J. Bot. 53: 143–153.

    Article  Google Scholar 

  • Hand P (1994) Biochemical and molecular makers of cellular competance for adventitious rooting. In: Davis, T.D., and Haissing, B.E. (eds). Biology of Adventitious Root Formation. pp. 111–122. Plenum Press, New York.

    Google Scholar 

  • Harbage JF, Stimart DP & Evert RF (1993) Anatomy of adventitious root formation in microcuttings of Malus domestica Borkh. ‘Gala’. J. Amer. Soc. Hort. Sci. 118: 680–688.

    Google Scholar 

  • Hartmann JT, Kester DE & Davies FTJr (1990) Plant Propagaion: Principles and Practices (5th ed). Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Hausman JF, Kevers C & Gaspar T (1994) Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol. Plant. 92: 201–206.

    Article  CAS  Google Scholar 

  • Hausman JF, Kevers C & Gaspar T (1995a) Auxin-polyamine interaction in the control of the rooting inductive phase of poplar shoots in vitro. Plant Sci. 110: 63–71.

    Article  CAS  Google Scholar 

  • Hausman JF, Kevers C & Gaspar T (1995b) Putrescine control of peroxidase activity in the inductive phase of rooting in poplar shoot in vitro, and adversary effect of spermidine. J. Plant Physiol. 146: 681–685.

    Article  CAS  Google Scholar 

  • Hayward HE (1938) The Structure of Economic Plants. MacMillan, New York.

    Google Scholar 

  • Heath IB (1990) Tip Growth in Plant and Fungal Cells. Academic Press. San Diego.

    Google Scholar 

  • Herrera MT, Cacho M, Corchete MP & Fernandez-Tarrago OJ (1990) One step shoot tip multiplication and rooting of Digitalis thapsi L. Plant Cell Tiss. Org. Cult. 22: 179–182.

    Article  Google Scholar 

  • Hicks GS (1987) Adventitious rooting of apple microcuttings in vitro: An anatomical study. Can. J. Bot. 65: 1913–1920.

    Article  Google Scholar 

  • Horgan K & Aitken J (1981) Reliable plantlet formation from embryos and seedling shoot tips of radiata pine. Physiol. Plant. 53: 170–175.

    Article  CAS  Google Scholar 

  • Hughes H, Lam S & Janik J (1973) In vitro culture of Salpiglosis sinuata L. Hort. Sci. 8: 335–336.

    Google Scholar 

  • Hyndman SE, Hasegawa PM & Bressan RA (1982) The role of sucrose and nitrogen in adventitious root formation on cultured rose shoots. Plant Cell Tiss. Org. Cult. 1: 229–238.

    Article  CAS  Google Scholar 

  • Jarvis BC (1986) Endogenous control of adventitious rooting in non-woody cuttings, In: Jackson, M.B. (ed.) New Root Formation in Plants and Cuttings. Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Jay-Allemand C, De Pons V, Doumas P, Capelli P, Sossountzov S & Cornu D (1991) In vitro root development from walnut cotyledons: a new model to study the rhizogenesis processes in woody plants. C. R. Acad. Sci. Paris. 312: 369–375.

    Google Scholar 

  • Kang MK, Cho DY & Soh W-Y (1996) Effects of auxins on adventitious root formation on cotyledon-derived microcalli in lettuce (Lactuca sativa L.). Korean J. Plant Tiss. Cult. 23: 135–139.

    Google Scholar 

  • Kaul K (1987) Plant regeneration from cotyledon-hypocotyl explants of Pinus strobus L. Plant Cell Rep. 6: 5–7.

    Article  Google Scholar 

  • Kieber JJ, Rothenberg M, Romon G, Feldman KA & Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441.

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Cho DY & Soh W-Y (1995) Saikosaponin content in adventitious root formed from callus of Bupleurum falcatum Korean J. Plant Tiss. Cult. 22: 29–33.

    Google Scholar 

  • Kramer PJ (1983) Water Relations of Plants. Academic Press. New York.

    Google Scholar 

  • Ladeinde TAO & Soh W-Y (1991) Effects of different growth regulators on organogenesis and total fresh weight gain in cultured leaf tissue of cowpea (Vigna unguiculata (L.) Walp.) Phytomorphology. 41: 199–207.

    Google Scholar 

  • Lloyd G & McCown G (1980) Commercially feasible micropropagation of Mountain Laurel, Kalmia latifolia, by use of shoot tip culture. Comb. Proc. Intern. Plant Prop. Soc. 30: 421–427.

    Google Scholar 

  • Lovell PH & White J (1986) Anatomical changes during adventitious root formation. In: Jackson, M.B.(ed) New Root Formation in Plants and Cuttings. pp. 111–140. Martinus Nijhoff Publishers, Dordrecht, Netherands.

    Chapter  Google Scholar 

  • Ludwig-Muller J & Epstein E (1991) Occurrence and in vivo biosynthesis of indole-3-butyric acid in corn (Zea mays L.) Plant Physiol. 97: 765–770.

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie KAD, Howard BH & Harrison-Murray RS (1986) The anatomical relationship between cambial regeneration and root initiation in wounded winter cuttings of the apple rootstock M. 26. Ann. Bot. 58: 649–661.

    Google Scholar 

  • Maene LM & Debergh PC (1983) Rooting of tissue cultured plants under in vivo conditions. Acta Hort. 131: 201–208.

    Google Scholar 

  • Maher EP & Martindale SJB (1980) Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem. Genet. 18: 1041–1053.

    Article  CAS  PubMed  Google Scholar 

  • Martinez MC, Jorgensen J-E, Lawton MA, Lamb CJ & Doemer PW (1992) Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc. Natl. Acad. Sci. USA. 89: 7360–7364.

    Article  CAS  PubMed  Google Scholar 

  • Masucci JD & Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505–1517.

    CAS  PubMed  Google Scholar 

  • Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD & Schiefelbein JW (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122: 1253–1260.

    CAS  PubMed  Google Scholar 

  • Matsuoka H & Hinata K(1979) NA.A-induced organogenesis and embryogenesis in hypocotyl callus of Solanum melongena L.. J. Exp. Bot. 30: 363–370.

    Article  CAS  Google Scholar 

  • Maynard CA, Satchwell M & Rieckermann H (1993) Micropropagation of American chestnut (Castanea dentata (Marsk) Borkh.); rooting and acclimatization. In: Mohn, C. A., (ed). Proc. Sec. North. For. Genet. Assoc. Conf. Roseville, MN 29–30: 161–170.

    Google Scholar 

  • McCown BH (1988) Adventitious rooting of tissue cultured plants. In: Davis, T. D., Hassing, B. E., and Sankhla, N. (eds). Adventitious Root Formation in Cuttings. pp. 289–302. Dioscorides Press, Portland, U.S.A.

    Google Scholar 

  • McKeand SE & Allen HL (1984) Nutritional and root development factors affecting growth of tissue culture plantlets of loblolly pine. Physiol. Plant. 61: 523–528.

    Article  CAS  Google Scholar 

  • McVeigh I (1938) Regeneration in Crassula muticava. Amer. J. Bot. 25: 7–11.

    Article  Google Scholar 

  • Mitsuhashi-Kato M, Shibaoka H & Shimokoriyama M (1978a) Anatomical and physiological aspects of developmental processes of adventitious root formation in Azukia cuttings. Plant Cell Physiol. 19: 867–874.

    Google Scholar 

  • Mitsuhashi-Kato M, Shibaoka H & Shimokoriyama M(1978b) The nature of the dual effect of auxin on root formation in Azukia cutting. Plant Cell Physiol. 19: 1535–1542.

    CAS  Google Scholar 

  • Mohammed GH, Patel KR & Vidaver WE (1989) The control of adventitious root production in tissue-cultured Douglas-fir. Can. J. For. Res. 19: 1322–1329.

    Article  CAS  Google Scholar 

  • Mohnen D (1994) Novel experimental system for determining cellular competence and determination. In: Darvis, T.D., and Haissig, B.C. (eds) Biology of Adventitious Root Formation. pp. 87–98. Plenum Press, New York.

    Google Scholar 

  • Mohnen D, Eberhard S, Marfa V, Doubrava N, Toubart P, Gollin DJ, Gruber TA, Nuri W, Albersheim P & Davill A (1990) The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TCLs). Development 108: 191–201.

    CAS  PubMed  Google Scholar 

  • Molnar JM & LaCroix LJ (1972) Studies of the rooting of cuttings of Hydrangea macrophylla: enzyme changes. Can. J. Bot. 50: 315–322.

    Article  CAS  Google Scholar 

  • Moncousin C (1991) Rooting of in vitro cuttings. In: Bajaj, Y.P.S. (ed.). Biotechnology in Agriculture and Forestry vol. 17. High-Tech and Micropropagation I. pp. 222–261. Springer-Verlag, Berlin.

    Google Scholar 

  • Mott RL & Amerson HV (1981) A tissue culture process for the clonal production of loblolly pine plantlets. North Carolina Agr. Res. Sr. Tech. Bull. 271, 14p.

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nicholas JR, Gates PJ & Grierson D(1986) The use of fluorescence microscopy to monitor root development in micropropagated explants. J. Hort. Sci. 61: 417–421.

    Google Scholar 

  • Nordstrom AC, Alvarado JF & Eliasson L (1991) Effect of endogenous indole-3-acetic acid on internal levels of the respective auxin and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol. 96: 856–861.

    Article  CAS  PubMed  Google Scholar 

  • Nougare’de A & Rondet P (1983) Bases cytophysiologiques de l’induction rhizogen en responese a un traitement auzinuque dans l’epicotyle du pois nain. Ann. Sce. Nat. Bot. Paris. 13e: 121–149.

    Google Scholar 

  • Patel KR, Rumary C & Thorpe TA (1986) Plantlet formation in black and white spmce. III. Histological analysis of in vitro root formation and the root-shoot union. N. Z. J. For. Sci. 16: 289–296.

    Google Scholar 

  • Pierik RLM (1987) In Vitro Culture of Higher Plants. Martinus Nijhoff, Dordrecht, Netherlands.

    Book  Google Scholar 

  • Poissonnier M, Franclet A, Dumant MJ & Gautry JY (1980) Enracinement de tigelles in vitro de Sequoia sempervirens. Annales AFOCEL, 1980, pp 231–254.

    Google Scholar 

  • Preece JE & Sutter EG (1991) Acclimation of micropropagated plants to the greenhouse and field, In: Debergh P.C., and Zimmerman, R.H. (eds). Micropropagation, technology and application. pp. 71–93. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Pressey R (1990) Anions activate the oxidation of indoleacetic acid by peroxidases from tomato and other sources. Plant Physiol. 93: 798–804.

    Article  CAS  PubMed  Google Scholar 

  • Quoirin M, Boxus P & Gaspar T (1974) Root initiation and isoperoxidases of stem tip cuttings from mature Prunus Plant Physiol. Vég. 12: 165–171.

    CAS  Google Scholar 

  • Ranjit M, Kester DE & Polito VS (1988) Micropropagation of cherry rootstocks: III. Correlations between anatomical and physiological parameters and root initiation. J. Amer. Soc. Hort. Sci. 113: 155–159.

    Google Scholar 

  • Read PE & Fellman CD (1985) Accelerating acclimation of in vitro propagated woody ornamenta.ls. Acta Hort. 166: 15–20.

    Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M & Chory J(1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147–57.

    CAS  PubMed  Google Scholar 

  • Robert ML, Herrera JL, Contreras F & Cooper KN (1988) In vitro propagation of Agave fourcroydes Lem (Henequen). Plant Cell Tiss. Org. Cult. 8: 37–48.

    Article  Google Scholar 

  • Rodriguez R (1982) Multiple shoot-bud formation and plantlet regeneration on Castanea safiva Mill. seeds in culture. Plant Cell Rep. 1: 161–164.

    Article  Google Scholar 

  • Rumary C & Thorpe TA (1984) Plantlet formation in black and white spruce. I. In vitro techniques. Can. J. For Res. 14: 10–16.

    Article  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv. Bot. Res. 9: 151–262.

    Article  Google Scholar 

  • Salisbury FB & Ross CW (eds) (1985) Plant Physiology, 3rd ed, Wadsworth, Belmont

    Google Scholar 

  • Samartin A, Vieitez AM & Vieitez E (1986) Rooting of tissue cultured camellias. J. Hort. Sci. 61: 113–120.

    CAS  Google Scholar 

  • Sandison S (1934) The rooting of cuttings of Lonicera japonica. A preliminary account. New Phytol. 33: 211–217.

    Article  Google Scholar 

  • Sangwan RS & Harada H (1975) Chemical regulation of callus growth, organogenesis and plant regeneration in Antirrhinum majus tissue and cell cultures. J. Exp. Bot. 26: 868–882.

    Article  CAS  Google Scholar 

  • Satoo S (1956) Anatomical studies on the rooting of cuttings in coniferous species. Bull. Tokyo Univ. For. 51: 109–158.

    Google Scholar 

  • Scheres Ben, McKhann H & Berg C (1996) Roots redefined: Anatomical and genetic anaylsis of root development. Plant Physiol. 111:959–964.

    CAS  PubMed  Google Scholar 

  • Schiefelbein JW, Shipley A & Rowse P (1992) Calcium influx at the tip of growing root hair cells of Arabidopsis thaliana. Planta 187: 455–59.

    Article  CAS  Google Scholar 

  • Schiefelbein JW & Somerville (1990) Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2: 235–243.

    CAS  PubMed  Google Scholar 

  • Schmidt E (1956/57) Anatomische Untersuchung uber das Vorkommen von Wurzelanlagen in verscheidenen Internodien von Pisum sativum. Flora 144: 151–153.

    Google Scholar 

  • Sharma KK, Bhojwani SS & Thorpe TA (1991) The role of cotyledonary tissue in the differentiation of shoots and roots from cotyledon explants of Brassica juncea (L.) Czern. Plant Cell Tiss. Org. Cult. 24: 55–59.

    Article  Google Scholar 

  • Sharma VK & Kothari SL (1993) High frequency plant regeneration in tissue cultures of Glycine clomdestina - a wild relative of soybean. Phytomorphology 43: 29–34.

    Google Scholar 

  • Skolmen RG & Mapes MO (1978) Aftercare procedures required for field survival of tissue culture propagatedAcacia Koa. Comb. Proc. Intern. Plant Prop. Soc. 28: 156–164.

    Google Scholar 

  • Skoog F & Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–131.

    CAS  PubMed  Google Scholar 

  • Smith DL & Fedoroff (1995) LRP1, a gene expression in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7: 735–745.

    CAS  PubMed  Google Scholar 

  • Smith MAL, Palta JP & McCown BH (1986) Comparative anatomy and physiology of microcultured, seedling and greenhouse-grown Asian white birch. J. Amer. Soc. Hort. Sci. 111: 437–442.

    Google Scholar 

  • Soh W-Y, Choi PS & Cho DY (1998) Effects of cytokinin on root formation in callus cultures of Vigna unguiculata (L.) Wa1p. In Vitro Cell. Dev. Biol.p, 34: 189–195.

    Google Scholar 

  • Sriskandarajah S, Mullins MG & Nair Y(1982) Induction of adventitious rooting in vitro in difficult-to-propagate cultivars of apple. Plant Sci. Lett. 24: 1–9.

    Article  CAS  Google Scholar 

  • Stangler BB (1956) Origin and development of adventitious root in stem cuttings of chrysanthemum, carnation, and rose. Cornell Univ. Agri. Station Mem. 342: 1–4.

    Google Scholar 

  • Steward FC, Mapes M & Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Amer. J. Bot. 45: 705–708.

    Article  Google Scholar 

  • Stinemetz CL (1995) Transport of 3H-IAA label in gravistimulated primary roots of maize . Plant Growtli Regu1.16: 83–92.

    Article  CAS  Google Scholar 

  • Su W & Howell SH (1992) A single genetic locus, Ckrl , defines Arabidopsis mutants in which root is resistant to low concentrations of cytokinin. Plant Physiol. 99: 1569–1574.

    Article  CAS  PubMed  Google Scholar 

  • Swingle CF (1927) Burr knot fromation in relation to the vascular system of the apple stem. J. Agri. Res. 34: 533–544.

    Google Scholar 

  • Tepper HB & Mante S (1990) The mature dicot cotyledon as an organogenic structure. Phytomorph. 40: 163–158.

    Google Scholar 

  • Thorpe TA (1980) Organogensis in vitro: Sturctural, physiological, and biochemical aspects. Intern. Rev. Cytol. supplement 11A. 71–111.

    Google Scholar 

  • Thorpe TA (1984) Clonal propagation of conifers. Proc. Intern. Symp. In Vitro Prop. Forest Tree Species, Bologna, 1984, pp. 35–50.

    Google Scholar 

  • Toivonen PMA (1985) The development of a photophysiological assessment system for white spruce (Picea glauca (Moench) Voss) seedlings and micropropagated plantlets. Ph.D. Thesis, Simon Fraser University, Burnaby.

    Google Scholar 

  • Torrey JG & Shigemura, Y (1957) Growth and controlled morphogenesis in pea root callus tissue grown in liquid media. Amer. J. Bot. 44: 334–344.

    Article  CAS  Google Scholar 

  • Torrigiani P, Altamura MM, Capitani F, Serafini-Fracassini D & Bagni N (1989) De nove root formation in thin cell layers of tobacco: changes in free and bound polyamines. Physiol. Plant. 77: 294–310.

    Article  CAS  Google Scholar 

  • Tran Thanh Van K (1973) In vitro and de nove flower, bud, root and callus differentiation from excised epidermal tissue. Nature 246: 44–45.

    Article  Google Scholar 

  • Tran Thanh Van K (1981) Control of morphogenesis in in vitro cultures. Ann. Rev. Plant Physiol. 32: 291–311.

    Article  Google Scholar 

  • Tran Thanh Van K & Gendy CA (1993) Relation between some cytological, biochemical molecular markers and plant morphogenesis. In: Roubelakis-Angelakis, K.A., and Tran Thanh Van, K. (eds). Morphogenesis in Plants. pp. 39–54. Plenum Press, New York.

    Chapter  Google Scholar 

  • Van Staden J & Harty AR (1988) Cytokinins and adventitious root formation. In: Davis, T., Haissig, B.E., Sankhla, N. (ed). Adventitious Root Formation in Cuttings. pp. 185–201. Dioscorides Press, Portland, Oregon.

    Google Scholar 

  • Van der Krieken WM, Breteler H, Marcel H, Visser M & Jordi W (1992) Effect of light and riboflavin on indolebutyric acid-induced root formation on apple in vitro. Physiol. Plant. 85: 589–594.

    Article  Google Scholar 

  • Van der Krieken WM, Breteler H, Marcel H, Visser M & Dimitra M (1993) The role of conversion of IBA into IAA on root regeneration in apple: introduction of a test system. Plant Cell Rep. 12: 203–206.

    Article  Google Scholar 

  • Van der Lek HAA (1925) Root development in woody cuttings. Mededelingen Landbouwhogeschool Wageningen. 28: 211–230.

    Google Scholar 

  • Vieitez AM, Vieitez L & Ballester A (1981) In vitro chestnut regeneration anatomical and chemical changes during the rooting process. Colloq. Int. sur la culture in vitro des assences forestières. IUFRO, Fountainebleau, pp. 149–152.

    Google Scholar 

  • Vieitez AM & Vieitez ML (1983) Secuencia de cambios anatomicos durante la rizogenesis in vitro del castano. Phyton 43: 185–191.

    Google Scholar 

  • Von Arnolds S (1982) Factors influencing formation, development and rooting of adventitious shoots from embryos of Picea abies (1.) Karst. Plant Sci. Lett. 27: 275–287.

    Google Scholar 

  • Walker KA, Wendeln ML & Jaworski EG (1979) Organogenesis in callus tissue of Medicago sativa. The temporal separation of induction processes from differentitation processes. Plant Sci. Lett. 16: 23–30.

    CAS  Google Scholar 

  • Warnick DA (1992) Developmental Biology of Rhizogenesis in vitro in Convolvulus arvensis. M. S. thesis, San Jose State Univ., Dept. Biol. Sci., San Jose.

    Google Scholar 

  • Welander M (1983) In vitro rooting of the apple rootstock M26 in adult and juvenile growth phases and acclimatization of the plantlets. Physiol. Plant. 58: 231–238.

    Article  CAS  Google Scholar 

  • Wernicke W, Potrykus I & Thomas E(1982) Morphogenesis from cultured leaf tissue of Sorghum bicolor — The morphogenetic pathways. Protoplasma 111: 53–62.

    Article  CAS  Google Scholar 

  • White J & Lovell PH (1984a) Anatomical changes which occur in cuttings of Agathis australis (D.Don) Lindl 1. Wounding responses. Ann. Bot. 54:621–632.

    Google Scholar 

  • White J & Lovell PH (1984b) Anatomical changes which occur in cuttings of Agathis australis (D.Don) Lindl 2. The initiation of root primordia and early root development. Ami. Bot. 54: 633–646.

    Google Scholar 

  • Wiesman Z, Riov J & Epstein E (1988) Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings. Physiol. Plant. 74: 556–560.

    Article  CAS  Google Scholar 

  • Wilcox H (1955) Regeneration of injured root systems in noble fir. Bot. Gaz. 116:221–234.

    Article  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC & Estelle MA (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscissic acid. Mol.Gen Genet. 222: 377–433.

    Article  CAS  PubMed  Google Scholar 

  • Wilson PJ & Van Staden J (1990) Rhizocauline, rooting co-factors and the concept of promoters and inhibitors of adventitious rooting — a review. Ann. Bot. 66: 479–490.

    CAS  Google Scholar 

  • Xing Z, Satchell MF, Powell WA & Maynard CA (1997) Micropropagation of American chestnut: increasing rooting rate and preventing shoot-tip necrosis. In Vitro Cell. Dev. Biol. p. 33: 43–48.

    Google Scholar 

  • Yoshizawa N, Shimizu H, Wakita Y, Yokota S & Idei T (1994) Formation of adventitious roots from callus cultures of taranoki (Aralia elata Seen.). Bull. Utsunomiya Univ. For. 30: 19–26.

    Google Scholar 

  • Ziv M (1986) In vitro hardening and acclimatization of tissue culture plants, In: Withers, L.A. and Alderson, P.G. (eds). Plant Tissue Culture and its Agricultural Applications. pp. 187–196. Butterworths, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Woong-Young Soh Sant S. Bhojwani

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soh, WY., Bhojwani, S.S., Lee, S. (1999). Developmental and Structural Aspects of Root Organogenesis. In: Soh, WY., Bhojwani, S.S. (eds) Morphogenesis in Plant Tissue Cultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9253-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9253-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5206-3

  • Online ISBN: 978-94-015-9253-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics