Skip to main content

Factors Controlling the Biodegradation of Chemicals in Soils

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

The natural biodegradation of chemicals in the environment is controlled by both the compounds’ characteristics (e.g., hydrophobicity), the environment’s characteristics (e.g., soil organic matter content) and the activity of the microbial population. Simplified biodegradability tests under laboratory conditions and in the absence of soil often show higher rates (given that sufficient and appropriate microorganisms are present). This could be explained by differences in compound bioavailability. Thus, standardized laboratory tests are not by themselves good predictors of environmental half-lives. In order to rapidly construct an environmental database, over 800 scientific articles were examined providing a subset of 75 publications with 26 different soils and 55 different compounds (given a total of 150 data). Sensitivity studies based on derived correlations show that not all environmental characteristics are relevant to predicting environmental half-lives. In addition, most chemicals studied are reputed to be difficult to degrade, which lessens the influence of environmental characteristics relative to molecular ones. In general, however, derived correlations show that under optimum or near optimum environmental conditions, biodegradation rates are controlled by molecular characteristics whereas under more extreme conditions biodegradation rates are controlled by environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aislabie J. and Lloydjones G. (1995), A review of bacterial degradation of pesticides, Aust. J. Soil Res. 33, 925–942.

    Article  CAS  Google Scholar 

  2. Barriuso E. and Houot S. (1996), Rapid mineralization of the s-triazine ring of atrazine in soils in relation to soil management, Soil Biol. Biochem. 28, 1341–1348.

    Article  CAS  Google Scholar 

  3. Bolan N.S. and Baskaran S. (1996), Biodegradation of 2,4-D herbicide as affected by its adsorption-desorption behaviour and microbial activity of soils, Attst. J. Soil Res. 34, 1041–1053.

    Article  CAS  Google Scholar 

  4. Kästner M. and Mahro B. (1996), Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost, Appl. Environ. Microbiol. 44, 668–675.

    Google Scholar 

  5. Nanny M.A., Bortiatynski J.M., Tien M. and Hatcher P.G. (1996), Investigations of enzymatic alterations of 2,4-dichlorophenol using C-13-nuclear magnetic resonance in combination with site-specific C-13-labeling: understanding the environmental fate of this pollutant, Environ. Tox. Client. 15, 1857–1864.

    CAS  Google Scholar 

  6. Majka J.T. and Lavy T.L. (1977), Adsorption, mobility and degradation of cyanazine and diurou in soils, Weed Sci. 25, 401–406.

    CAS  Google Scholar 

  7. Simkins S. and Alexander M. (1984), Models for mineralization kinetics with the variables of substrate concentration and population density, Appl. Environ. Microbiol. 47, 1299–1306.

    CAS  Google Scholar 

  8. Thouand G., Friant P., Bois F., Cartier A., Maul A. and Block J.C. (1995), Bacterial inoculum density and probability of para-nitroplienol biodegradability test response, Ecotoxicol. Environ. Safety. 30, 274–282.

    Article  CAS  Google Scholar 

  9. Madsen E.L. (1997), Methods for determining biodegradability, Chapter 77, in Manual of Environmental Microbiology (ed. Hurst C.J.),ASM Press, Washington D.C., 709–720.

    Google Scholar 

  10. Howard P.H., Boethling R.S., Jarvis W.F., Meylan W.M. and E.M. M. (Eds) (1991), Handbook of environmental degradation rates, Lewis Publishers, Inc, Chelsea, Michigan, 725 p.

    Google Scholar 

  11. Boethling R.S. (1986), Application of molecular topology to quantitative structure-biodegradability relationships, Environ. Tox. Chen,. 5, 797–806.

    Article  CAS  Google Scholar 

  12. Bossert I.D. and Bartha R. (1986), Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil, Bull. Environ. Contain. Toxicol. 37, 490–495.

    Article  CAS  Google Scholar 

  13. Cambon B. and Devillers J. (1993), New trends in structure-biodegradability relationships, Quant. Struct.-Act. Belie. 12, 49–56.

    Article  CAS  Google Scholar 

  14. Dearden J.C. and Nicholson R.M. (1986), The prediction of biodegradability by the use of quantitative structure-activity relationships: correlation of biological oxygen demand with atomic charge difference, Pestic. Sci. 17, 305–310.

    Article  CAS  Google Scholar 

  15. Okey R.W. and Stensel H.D. (1996), A QSAR-based biodegradability model–A QSBR, Wat. Res. 30, 2206–2214.

    Article  CAS  Google Scholar 

  16. Vaishnav D.D., Boethling R.S. and Babeu L. (1987), Quantitative structure-biodegradability relationships for alcohols, ketones and alicyclic componds, Chemosphere. 16, 695–703.

    Article  CAS  Google Scholar 

  17. Damborsky J. (1996), A mechanistic approach to deriving quantitative structure-activity relationship models for microbial degradation of organic compounds, SAR QSAR Environ. Res. 5, 27–36.

    Article  CAS  Google Scholar 

  18. Eriksson L., Johnson J., Hellberg S., Lindgren F., Skagerberg B., Sjöström M., Wold S. and Berglind R. (1990), A strategy for ranking environmentally occuring chemicals. Part III: multivariate quantitative structure-activity relationships for halogenated aliphatics, Environ. Tox. Chem. 9, 1339–1351.

    Article  CAS  Google Scholar 

  19. Peijnenburg W. (1994), Structure-activity relationships for biodegradation: a critical review, Pure Appl. Chem. 66, 1931–1941.

    Article  CAS  Google Scholar 

  20. Boethling R.S. and Sabljic A. (1989), Screening-level model for aerobic biodegradability based ou a survey of expert knowledge, Environ. Sci. Technol. 23, 672–679.

    Article  CAS  Google Scholar 

  21. Boethling R.S., Howard P.H., Meylan W., Stiteler W., Beauman J. and Tirado N. (1994), Group contribution method for predicting probability and rate of aerobic biodegradation, Environ. Sci. Technol. 28, 459–465.

    Article  CAS  Google Scholar 

  22. Degner P., Nendza M. and Klein W. (1991), Predictive QSAR models for estimating biodegradation of aromatic compounds, Sci. Total Environ. 109/110, 253–259.

    Google Scholar 

  23. Desai S.M., Govind R. and Tabak MI. (1990), Development of quantitative-structure relationships for predicting biodegradation kinetics, Environ. Tox. Chem. 9, 473–477.

    Article  CAS  Google Scholar 

  24. Devillers J. (1993), Neural modelling of the biodegradability of benzene derivatives, SAR QSAR Environ. Res. 1, 161–167.

    Article  CAS  Google Scholar 

  25. Howard P.H., Boethling R.S., Stiteler W., Meylan W. and Beauman J. (1991), Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base, Sci. Total Environ. 109/110, 635–641.

    Google Scholar 

  26. Kawasaki M. (1980), Experiences with the test scheme under the chemical control law of Japan: an approach to structure-activity correlations, Ecotoxicol. Environ. Safety. 4, 444–454.

    Article  CAS  Google Scholar 

  27. Niemi G.J., Veith G.D., Regal R.R. and Vaishnav D.D. (1987), Structural features associated with degradable and persistent chemicals, Environ. Tox. Chem. 6, 515–527.

    Article  CAS  Google Scholar 

  28. Combes R.D. and Judson P. (1995), The use of artificial intelligence systems for predicting toxicity, Pestic. Sci. 45, 179–194.

    Article  CAS  Google Scholar 

  29. Dearden J.C. and Nicholson R.M. (1987), QSAR study of the biodegradability of environmental pollutants, in QSAR in drug design and toxicology (eds. Hadzi D. and Blazic B.J.),Elsevier Science Publishers B.V., Amsterdam, 307–312.

    Google Scholar 

  30. Eriksson L., Rännar S., Sjöström S. and Hermens J.L.M. (1994), Multivariate QSARs to model the hydroxyl radical rate constant for halogenated aliphatic hydrocarbons, Environmetries. 5, 197–208.

    Article  Google Scholar 

  31. Hermens J.L.M. (1989), Quantitative structure-activity relationships of environmental pollutants, in Handbook of Environmental Chemistry, vol, Reactions and Processes (ed. Hutzinger 0.),2E, Springer Verlag, Berlin, 111–162.

    Google Scholar 

  32. Mani S.V., Connell D.W. and Braddock R.D. (1991), Structure activity relationships for the prediction of biodegradability of environmental pollutants, Critic. Rev. Environ. Cont. 21, 217–236.

    Article  CAS  Google Scholar 

  33. Nandihalli U.B. and Rebeiz C.A. (1991), Photodynamic herbicides. 9. Structure activity study of substituted 1,10-phenanthrolines as potent photodynamic herbicide modulators, Pestic. Biochem. Physiol. 40, 27–46.

    Article  CAS  Google Scholar 

  34. Nandihalli U.B., Duke M.V. and Duke S.O. (1993), Prediction of RP-HPLC log P from semi-empirical molecular properties of diphenyl ether and phenopylate herbicides, J. Agric. Food Chem. 41, 582–587.

    Article  CAS  Google Scholar 

  35. Okey R.W. and Stensel H.D. (1993), A QSBR development procedure for aromatic xeuobiotic degradation by unacclimated bacteria, Wat. Environ. Res. 65, 772–780.

    Article  CAS  Google Scholar 

  36. Parsons J.R. and Govers H.A.J. (1990), Quantitative structure-activity relationships for biodegradation, Ecotoxicol. Environ. Safety. 19, 212–227.

    Article  CAS  Google Scholar 

  37. Sabljic A., Gusten H., Verhaar H. and Hermens J. (1995), QSAR modelling of soil sorption. Improvements and systematics of log Ka vs log K0 correlations, Chemosphere. 31, 4489–4514.

    Article  CAS  Google Scholar 

  38. Vaz R. (1996), Computer assisted molecular design: overview of modern techniques in quantitative structure activity relationships (QSAR), Weed Sci. 44, 718–733.

    CAS  Google Scholar 

  39. Verhaar H.J.M., Eriksson L., Sjöström M., Schüürmann G., Seinen W. and Hermens J.L.M. (1994), Modelling the toxicity of organophosphates: a comparison of the multiple linear regression and PLS regression methods, Quant. Struct.-Act. Relat. 13, 133–143.

    CAS  Google Scholar 

  40. Gombar V.K. and Enslein K. (1991), A structure-biodegradability relationship model by discriminant analysis, in Applied multivariate analysis in SAR and environmental studies (eds. Devillers J. and Karcher W.),ECSE, EEC, EAEC, Brussels and Luxembourg, The Netherlands, 377–414.

    Google Scholar 

  41. Domine D., Devillers J., Chastrette M. and Karcher W. (1993), Estimating pesticide field half-lives from a backpropagation neural network, SAR QSAR Environ. Res. 1, 211–219.

    Article  CAS  Google Scholar 

  42. Lohninger H. (1994), Estimation of soil partition coefficients of pesticides from their chemical structure, Chemosphere. 29, 1611–1626.

    Article  CAS  Google Scholar 

  43. Xu L., Ball J.W., Dixon S.L. and Jurs P.C. (1994), Quantitative structure-activity relationships for toxicity of phenols using regression analysis and computational neural networks, Environ. Tox. Chem. 13, 841–851.

    Article  CAS  Google Scholar 

  44. Kameya T., Murayama T., Urano K. and Kitano M. (1995), Biodegradation ranks of priority organic compounds under anaerobic conditions, Sci. Total Environ. 170, 43–51.

    Article  CAS  Google Scholar 

  45. Kuenemann P., Vasseur P. and Devillers J. (1990), Structure-biodegradability relationships, in Practical applications of quantitative structure activity relationships (QSAR) in environmental chemistry and toxicology (eds. Karcher W. and Devillers J.),ECSC, EEC, EAEC, Bruxelles, Luxembourg, 343–370.

    Google Scholar 

  46. Pollard S.J.T., Hrudey S.E. and Fedorak P.M. (1994), Biodegradation of petroleum-and creosote-contaminated soils: a review of constraints, Waste Management Research. 12, 173–194.

    CAS  Google Scholar 

  47. Cerniglia C.E. (1993), Biodegradation of polycyclic aromatic hydrocarbons, Curr. Opinion in Biotechnol. 4, 331–338.

    Article  CAS  Google Scholar 

  48. Harmsen J., van den Toorn A. and van Dijk-Hooyer O.M. (1997), Natural attenuation of PAHs in dredged sediments on agricultural fields

    Google Scholar 

  49. Shuttleworth K.L. and Cerniglia C.E. (1995), Environmental aspects of PAH biodegradation, Appl. Biochem. Biotechnol. 54, 291–302.

    Article  CAS  Google Scholar 

  50. Vasseur P., Kuenemann P. and Devillers J. (1993), Quantitative structure-biodegradability relationships for predictive purposes, Chapter 4, in Chemical exposure predictions (ed. Calamari D.),Lewis publishers, Boca Raton, 47–61.

    Google Scholar 

  51. De Bruijn J. and Hermens J.L.M. (1990), Relationships between octanol/water partition coefficients and total molecular surface area and total molecular volume of hydrophobic organic chemicals, Quant. Struct.-Act. Relat. 9, 11–21.

    Article  Google Scholar 

  52. Reddy K.N. and Locke M.A. (1994), Prediction of soil sorption (K0) of herbicides using semi-empirical molecular properties, Weed Sci. 42, 453–461.

    CAS  Google Scholar 

  53. Todeschini R., Lasagni M. and Marengo E. (1994), New molecular descriptors for 2D and 3D structures theory, J. Chentonetrics. 8, 263–272.

    Article  CAS  Google Scholar 

  54. Strauss H.S. (1997), Is bioremediation a green technology?, J. Soil Contamin. 6, 219–225.

    Article  CAS  Google Scholar 

  55. Pitter P. and Chudoba J. (1990), Relationship between molecular structure and biological degradability, chapter 5, in Biodegradabiliyy of organic substances in the aquatic environment CRC Press, Boca Raton, Ann Arbor, Boston–Mi, 165–250.

    Google Scholar 

  56. Pitter P. and Chudoba J. (Eds) (1990), Quantitative structure-biodegradability relationships, chapter 6, CRC Press, Boca Raton, Ann Arbor, Boston–Mi, 251–306.

    Google Scholar 

  57. Cabridenc R. (1990), Prévision de la biodégradation aérobie en milieu aquatique au moyen de méthodes de laboratoire, in Proceeding of the International Congress “Evaluation de la dégradation des substances organiques dans l’environnement”, Société d’Ecotoxicologie Fondamentale et Appliquée (SEFA), Paris, 23–25 mai 1989, 95–115.

    Google Scholar 

  58. Pagga U. (1997), Testing biodegradability with standardized methods, Chemosphere. 35, 2953–2972.

    Article  CAS  Google Scholar 

  59. Thouand G., Capdeville B. and Block J.C. (1996), Pre-adapted inocula for limiting the risk of errors in biodegradability tests, Ecotoxicol. Environ. Safety. 33, 261–267.

    Article  CAS  Google Scholar 

  60. Alexander M. and Scow K.M. (1989), Kinetics of biodegradation in soil, Reaction and movement of organic chemicals in soil, Soil Science Society of America and American Society of Agronomy (SSSA) Special Publication. 22, 243–269.

    CAS  Google Scholar 

  61. Blumhorst M.R. (1996), Experimental parameters used to study pesticide degradation in soil, Weed Technology. 10, 169–173.

    CAS  Google Scholar 

  62. Larson R.J. and Cowan C.E. (1995), Quantitative application of biodegradation data to environmental risk and exposure assessments, Environ. Tox. Chers- 14, 1433–1442.

    Article  CAS  Google Scholar 

  63. Nyholm N. (1991), The European system of standardized legal tests for assessing the biodegradability of chemicals, Environ. Tox. Chem. 10, 1237–1246.

    Article  CAS  Google Scholar 

  64. Zwietering M.H., Rombouts F.M. and Vantriet K. (1992), Comparison of definitions of the lag phase and the exponential phase in bacterial growth, J. Appl. Bacteriol. 72, 139–145.

    Article  CAS  Google Scholar 

  65. Mervosh T.L., Sims G.K., Stoller E.W. and Ellsworth T.R. (1995), Clomazone sorption in soil: incubation time, temperature, and soil moisture effects, J. Agric. Food Chem. 43, 2295–2300.

    Article  CAS  Google Scholar 

  66. Patil S.G., Nicholls P.H., Chamberlain K., Briggs G.G. and Bromilow R.H. (1988), Degradation rates in soil of 1-benzyltriazoles and two triazoles fungicides, Pestic. Sci. 22, 333–342.

    Article  CAS  Google Scholar 

  67. Thirunarayanan K., Zimdhal R.L. and Smika D.E. (1985), Chlorsulfuron adsorption and degradation in soil, Weed Sci. 33, 558–563.

    CAS  Google Scholar 

  68. Walker A. and Brown P.A. (1983), Measurement and prediction of chlorsulfuron persistence in soil, Bull. Environ. Contant. Toxicol. 30, 365–372.

    Article  CAS  Google Scholar 

  69. Corseuil H.X. and Alvarez P.J.J. (1996), Natural bioremediation perspective for BTX-contaminated groundwater in Brazil: effect of ethanol, Water Sci. Tech. 34, 311–318.

    Article  CAS  Google Scholar 

  70. Mabey W. and Mill T. (1978), Critical review of hydrolysis of organic compounds in water under environmental conditions, J. Phys. Chem. Ref Data. 7, 383–415.

    Article  CAS  Google Scholar 

  71. Penttinen O.P. (1995), Chlorophenols in aquatic environments: structure-activity correlations, Ann. Zool. Ferunici. 32, 287–294.

    Google Scholar 

  72. Berger B.M. and Wolfe N.L. (1996), Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous buffers and anaerobic water-sediment systems: assessing fate pathways using molecular descriptors, Environ. Tox. Chem. 15, 1500–1507.

    CAS  Google Scholar 

  73. Marsh B.H. and Lloyd R.W. (1996), Soil pH effect on imazaquin persistence in soil, Weed Technology. 10, 337–340.

    CAS  Google Scholar 

  74. Grady C.P.L., Smets B.F. and Barbeau D.S. (1996), Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology, Wat. Res. 30, 742–748.

    Article  CAS  Google Scholar 

  75. Freijer J.I., Dejonge H., Bouten W. and Verstraten J.M. (1996), Assessing mineralization rates of petroleum hydrocarbons in soils in relation to environmental factors and experimental scale, Biodegradation. 7, 487–500.

    Article  CAS  Google Scholar 

  76. Willems H.P.L., Lewis K.J., Dyson J.S. and Lewis F.J. (1996), Mineralization of 2,4-D and atrazine in the unsaturated zone of a sandy loam soil, Soil Biol. Biochem. 2S, 989–996.

    Article  Google Scholar 

  77. Schwarzenbach R.P., Gschwend P.M. and Imboden D.M. (Eds) (1993), Environmental organic chemistry, Chap 11, Wiley-Interscience, John Wiley and Sons, New York, 255–341.

    Google Scholar 

  78. Smith R.L. (1997), Determining the terminal electron-accepting reaction in the saturated subsurface, Chapter 63, in Matinal of Environmental Microbiology (ed. Hurst C.J.),ASM Press, Washington D.C., 577–585.

    Google Scholar 

  79. Evans B.S., Dudley C.A. and Klasson K.T. (1996), Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms, Appl. Biochem. Biotechnol. 57, 885–894.

    Article  Google Scholar 

  80. Natarajan M.R., Nye J., Wu W.M., Wang H. and Jain M.K. (1997), Reductive dechlorination of PCB-contaminated raisin river sediments by anaerobic microbial granules, Biotech. Bioeng. 55, 182–190.

    Article  CAS  Google Scholar 

  81. Vogel T.M., Criddle C.S. and McCarty P.L. (1987), Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21, 722–736.

    Article  CAS  Google Scholar 

  82. Bouwer E.J. (1989), Transformation of xenobiotics in bofilms, in Structure and Function of Biofilms, Dahlem Konferenzen (eds. Characklis W.G. and Wilderer P.A.),John Wiley and Sons Ltd, Chichester, New York, 251–267.

    Google Scholar 

  83. Ganaye V., Louis-Rose K., Fass S., Vogel T.M. and Block J.C. (1998), Activité de la souche bactérienne Rhodanobacter lindanoclasticus dégradant un composé organo-chloré en conditions aérobies, in Congrès de la Société Française de Microbiologie, Lille, 26–28 avril.

    Google Scholar 

  84. Bonneau M. and Souchier B. (Eds) (1994), Pédologie. 2. Constituants et propriétés du sol, Deuxième édition, Masson, Paris, 665 p.

    Google Scholar 

  85. Harms H. and Zehnder A.J.B. (1995), Bioavailability of sorbed 3-cholorodibenzofuran, Appl. Environ. Microbiol. 61, 27–33.

    CAS  Google Scholar 

  86. Ograin A.V., Jessup R.E., Ou L.T. and Rao P.S.C. (1985), Effets of sorption on biological degradation rates of (2,4-diclilorophenoxy) acetic acid in soils, Appl. Environ. Microbial. 49, 582–587.

    Google Scholar 

  87. Knaebel D.B., Federle T.W., Mcavoy D.C. and Vestal J.R. (1996), Microbial mineralization of organic compounds in an acidic agricultural soil: effects of preadsorption to various soil constituents, Environ. Tox. Chem. 15, 1865–1875.

    Article  CAS  Google Scholar 

  88. Matus V., Vasquez M., Vicente M. and Gonzalez B. (1996), Microbial mineralization of 2,4,5trichlorophenol in soil, Environ. Sci. TechnoL 30, 1472–1476.

    Article  CAS  Google Scholar 

  89. Holden P.A. and Firestone M.K. (1997), Soil microorganisms in soil cleanup: how can we improve our understanding?, J. Environ. Qual. 26, 32–40.

    Article  CAS  Google Scholar 

  90. Karickhoff S.W., Brown D.S. and Scott T.A. (1979), Sorption of hydrophobic pollutants on natural sediments, Water Res. 13, 241–248.

    Article  CAS  Google Scholar 

  91. Means J.C., Wood S.G., Hasset J.J. and Banwart W.L. (1980), Sorption of polynuclear aromatic hydrocarbons by sediments and soils, Environ. Sci. Technol. 14, 1524–1528.

    Article  CAS  Google Scholar 

  92. Chiou C.T., Peters L.J. and Freed V.H. (1979), A physical concept of soil-water equilibria for nonionic organic compound, Science. 206, 831–832.

    Article  CAS  Google Scholar 

  93. Chiou C.T., Porter P.E. and Schmedding D.W. (1983), Partition equilibria of nonionic organic compounds between soil organic matter and water, Environ. Sci. Technol. 17, 227–231.

    Article  CAS  Google Scholar 

  94. Gabarini D.R. and Lion L.W. (1986), Influence of the nature of soil organics on the sorption of toluene and trichloroethylene, Environ. Sci. Technol 20, 1263–1269.

    Article  Google Scholar 

  95. Gauthier T.D., Seitz W.R. and Grant C.L. (1987), Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values, Environ. Sci. Technol. 21, 243–248.

    Article  CAS  Google Scholar 

  96. Grathwohl P. (1990), Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on Koc correlations, Environ. Sci. Technol. 24, 1687–1693.

    Article  CAS  Google Scholar 

  97. Mingelgrin U. and Gerstl Z. (1983), Reevaluation of portioning as a mechanism of nonionic chemicals adsorption in soils, J. Environ. Qual. 12, 1–11.

    Article  CAS  Google Scholar 

  98. Rutherford D.W., Chou C.T. and Kite D.E. (1992), Influence of soil organic matter composition on the partition of organic compounds, Environ. Sci. Technol. 26, 336–340.

    Article  CAS  Google Scholar 

  99. Xing B., McGill W.B. and Dudas M.J. (1994), Cross-correlation of polarity curves to predict partition coefficients of nonionic organic contaminants, Environ. Sci. Technol. 28, 1929–1933.

    Article  CAS  Google Scholar 

  100. Ganaye V.A., Keiding K., Vogel T.M., Viriot M.L. and Block J.C. (1997), Evaluation of soil organic matter polarity by pyrene fluorescence spectrum variations, Environ. Sci. Technol. 31, 2701–2706.

    Article  CAS  Google Scholar 

  101. Magdaliniuk S., Block J.C., Leyval C., Bottero J.Y., Villemin G. and Babut M. (1995), Biodegradation of naphthalene in montmorillonitelpolyacrilamide suspensions, Water Sci. Tech. 31, 85–94.

    CAS  Google Scholar 

  102. Crocker F.H., Guerin W.F. and Boyd S.A. (1995), Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay, Environ. Sci. Technol. 29, 2953–2958.

    Article  CAS  Google Scholar 

  103. Barriuso E., Houot S. and Serra-Wittling C. (1997), Influence of compost addition to soil on the behaviour of herbicides, Pestic. Sci. 49, 65–75.

    Article  CAS  Google Scholar 

  104. Nair D.R. and Schoor J.L. (1994), Effect of soil conditions on model parameters and atrazine mineralization rates, Wat. Res. 28, 1199–1205.

    Article  CAS  Google Scholar 

  105. Naluska L., Barancikova G., Balaz S., Dercova K., Vrana B., Pazweisshaar M., Furciova E. and Bielek P. (1995), Degradation of PCB in different soils by inoculated Alcaligenes xylosoxidans, Sci. Total Environ. 175, 275–285.

    Google Scholar 

  106. Fujimura Y., Kuwatsuka S. and Katayama A. (1996), Bioavailability and biodegradation rate of DDT by Bacillus sp b75 in the presence of dissolved humic substances, Soil Sci. Plant Nutr. 42, 375–381.

    CAS  Google Scholar 

  107. Mackay N. and Betts W.B. (1991), The fate of chemicals in soil, chapter 5, in Biodegradation: natural and synthetic materials. (ed. Betts W.B.),Springer Verlag, London, 89–117.

    Google Scholar 

  108. Duchaufour P. (Eds) (1995), Pédologie: sol, végétation, environnement, Quatrième édition, Masson, Paris, 324 p.

    Google Scholar 

  109. Kukkonen J. and Landrum P. (1996), Distribution of organic carbon and organic xenobiotics among different particule-size fractions in sediments, Chemosphere. 32, 1063–1076.

    Article  CAS  Google Scholar 

  110. Cano M.L. and Dorn P.B. (1996), Sorption of an alcohol ethoxylate surfactant to natural sediments, Environ. Tox. Chem. 15, 684–690.

    Article  CAS  Google Scholar 

  111. Manrique L.A., Jones C.A. and Dyke P.T. (1991), Predicting cation-exchange capacity from soil physical and chemical properties, Soil Sci. Soc. Am. J. 55, 787–794.

    Google Scholar 

  112. Thompson M.L., Zhang H., Kazemi M. and Sandor J.A. (1989), Contribution of organic matter to cation exchange capacity and specific surface area of fractionated soil materials, Soil Science. 148, 250–257.

    Article  CAS  Google Scholar 

  113. Starr R.I., Timm R.W., Doxtader K.G., Hurlbut D.B., Volz S.A. and Goodall M. (1996), Sorption and aerobic biodegradation of strychnine alkaloid in various soil systems, J. Agric. Food Chem. 44, 1603–1608.

    Article  CAS  Google Scholar 

  114. Tabak H.H. and Govind R. (1993), Prediction of biodegradation kinetics using a nonlinear group contribution method, Environ. Tox. Chem. 12, 251–260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fass, S., Vaudrey, H., Vogel, T.M., Block, JC. (1999). Factors Controlling the Biodegradation of Chemicals in Soils. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics