Skip to main content

Reduction of the Bioavailability of PAHS in Heavily Contaminated Soils and Sediments Treated Via a Physico-Chemical Process

  • Chapter
  • 413 Accesses

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

Stabilization/solidification processes have gained acceptance as a cost-effective alternative in sediment decontamination projects where bioremediation or phytoremediation are not viable options because of toxicity to microorganisms or plants, respectively. This chapter presents a rapid overview of a proprietary technology, known as Georemediation™, which goes beyond traditional stabilization/solidification technologies in that it promotes an array of chemical reactions that denature organic xenobiotics, immobilize them into mineral structures or transform them into non-toxic compounds. Whatever remains of the original contaminants is bioavailable at levels that are compatible with biological activity. In the second part of the chapter, a case study is presented and analyzed in detail to illustrate a field application of the technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Tabbaa, A. and Prose, S. (1997). Treatability study of in-situ stabilization/solidification of soil contaminated with methylene blue Environmental Technology 17, 191–197.

    Google Scholar 

  2. Al-Tabbaa, A. and Evans C.W. (1998). Pilot in situ auger mixing treatment of a contaminated site. Part 1: treatability study. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 131, 52–59.

    Google Scholar 

  3. Al-Tabbaa, A. and King, S.D. (1998). Time effects of three contaminants on the durability and permeability of a solidified sand. Environmental Technology 19, 401–408

    Article  CAS  Google Scholar 

  4. Baker, P.G. and Bishop, P.L. (1997). Prediction of metal leaching rates from solidified/stabilized wastes using the shrinking unreacted core leaching procedure. Journal of Hazardous Materials 52, 311–333.

    Article  CAS  Google Scholar 

  5. Barrer, R.M. and MacLeod, D.M. (1955). Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Faraday Society Transactions 51, 1290–1300.

    Article  CAS  Google Scholar 

  6. Batchelor, B. (1997). A framework for risk assessment of disposal of contaminated materials treated by solidification/stabilization. Environmental Engineering Science 14, 3–13.

    Article  CAS  Google Scholar 

  7. Baveye, P., and Bladon, R. (1999) Bioavailability of organic xenobiotics in the environment: A critical perspective, (this volume).

    Google Scholar 

  8. Borgand, A.E. and Barth, T. (1994). Generation of short chain acids from crude oil by hydrous pyrolysis. Organic Geochemistry 21, 943–952.

    Article  Google Scholar 

  9. Cheney, M.A., Sposito, G., McGrath, A.E., and Criddle, R.S. (1996). Abiotic degradation of 2,4-D (dichlorophenoxyacetic acid) on synthetic birnessite: a calorespirometric method. Surfaces and Colloids A: Physicochemical and Engineering Aspects 107, 131–140.

    Article  CAS  Google Scholar 

  10. Conner, J.R. (1995). Recent findings on immobilization of organics as measured by total constituent analysis. Waste Management 15, 358–369.

    Article  Google Scholar 

  11. Conner, J.R. and Hoefflner, S.L. (1998a). A critical review of stabilization/solidification technology. Critical Reviews in Environmental Science and Technology 28 (4), 397–462.

    Article  CAS  Google Scholar 

  12. Conner, J.R. and Hoefflner, S.L. (1998b). The history of stabilization/solidification technology. Critical Reviews in Environmental Science and Technology 28 (4), 325–396.

    Article  CAS  Google Scholar 

  13. Crovisier, J.L., Thomassin, J.H., Eberhart, J.P., Touray, J.C., and Baillif, P. (1983). Experimental seawater-basaltic glass interaction at 50°C: study of early developed phases by electron microscopy and x-ray photoelectron spectrometry. Geochimica et Cosmochimica Acta 47, 377–387.

    Article  CAS  Google Scholar 

  14. Farmer, V.C., Krishnamurti, G.S.R., and Huang, P.M. (1991). Synthetic allophane and layer -silicate formation in Si02-Al203-FeO-Fe203-MgO-H20 systems at 23°C and 89°C in a calcareous environment. Clays and Clay Minerals 39, 561–570.

    Article  CAS  Google Scholar 

  15. Farmer, V.C., McHardy, W.J., Palmieri, F., Violante, A., and Violante P. (1991). Synthetic allophanes formed in calcareous environments: nature, conditions of formation, and transformations. Soil Science Society of America Journal 55, 1162–1166.

    Article  CAS  Google Scholar 

  16. Förstner, U. (1996). Waste treatment: geochemical engineering approach, in R. Reuther (ed.), Geochemical approaches to environmental engineering of metals. Springer-Verlag, Berlin Heidelberg, pp. 155–182.

    Chapter  Google Scholar 

  17. Furnes, H. (1975). Experimental palagonization of basaltic glasses of varied composition. Contribution to Mineralogy and Petrology 50, 105–113.

    Article  CAS  Google Scholar 

  18. Harder, H. (1978). Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals 26, 65–72.

    Article  CAS  Google Scholar 

  19. Harder, H. (1980). Synthesis of glauconite at surface temperature. Clays and Clay Minerals 28, 217–222.

    Article  CAS  Google Scholar 

  20. Helgeson, H.C., Knox, A.M., Owens, C.E., and Shock, E.L. (1993). Petroleum, oilfield waters, and authigenic mineral assemblages: are they in metastable equilibrium in hydrocarbon reservoirs? Geochimica et Cosmochimica Acta 57, 3295–3339.

    Article  CAS  Google Scholar 

  21. Henderson, W., Eglinton, O., Simmonds, P., and Lovelock, J.E. (1968). Thermal alteration as a contributing process to the genesis of petroleum. Nature 219, 1012–1016.

    Article  CAS  Google Scholar 

  22. Karimi-Lotfabad, S., Pickard, M.A., and Gray, M.R. (1996). Reactions of polynuclear aromatic hydrocarbons on soil. Environmental Science Technology 30, 1145–1151.

    Article  CAS  Google Scholar 

  23. Kawano, M. and Tomita, K. (1997). Experimental study on the formation of zeolites from obsidian by interaction with NaOH and KOH solution at 150°C and 200°C. Clays and Clay Minerals 45, 365–377.

    Article  CAS  Google Scholar 

  24. Kawano, M., Tomita, K., and Shinohara, Y. (1997). Analytical electron microscopy study of the noncrystalline products formed at early weathering stages of volcanic glass. Clays and Clay Minerals 45, 440–447.

    Article  CAS  Google Scholar 

  25. Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C., and Hedges, J.I. (1994). Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT fractionation. Geochimica et Cosmochimica Acta 58, 879–893.

    Article  CAS  Google Scholar 

  26. Lewan, M.D. (1997). Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta 61, 3691–3723.

    Article  CAS  Google Scholar 

  27. MacEwan, D.M.C. and Wilson, M.J. (1984). Interlayer and intercalation complexes of clay minerals, in G.W. Brindley and G. Brown (eds.), Cristal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society monograph No. 5, Mineralogigal Society, London, pp. 197–284.

    Google Scholar 

  28. Mayer, L.M. (1994). Surface area control of organic carbon accumulation in continental shelf sediment. Geochimica et Cosmochimica Acta 58, 1271–1284.

    Article  CAS  Google Scholar 

  29. McBride, M.B. (1989). Oxidation of dihydroxybenzenes in aerated aqueous suspension of birnessite. Clays and Clay Minerals 37, 341–347.

    Article  CAS  Google Scholar 

  30. McGrath, A.E. (1994). Adsorption and abiotic degradation of aromatic amines on birnessite and ferrihydrite: impact on Soils. Unpublished Ph.D. Dissertation, University of California, Berkeley, California.

    Google Scholar 

  31. Pinnavia, T.J. (1983). Intercalated clay catalysts. Science 220, 365–371.

    Article  Google Scholar 

  32. Pinnavia, T.J., Tzou, M.-S., Landau, D., and Raythatha, R.H. (1984). On the pillaring and delamination of smectite clay catalysts by polyoxo cation of aluminum. Journal of Molecular Catalysis 27, 195–212.

    Article  Google Scholar 

  33. Pizzigallo, M.D.R., Ruggiero, P., Crecchio, C., and Mininni, R. (1995). Manganese and iron oxides as reactants for oxidation of chlorophenols. Soil Science Society of America Journal 59, 444–452.

    Article  CAS  Google Scholar 

  34. Powell, R.M. and Puls, R.W. (1997). Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zerovalence-state iron. Environmental Science and Technology 31, 2244–2251.

    Article  CAS  Google Scholar 

  35. Ruggiero, P. (1999). Abiotic transformation of organic xenobiotics in soils: a compounding factor in the assessment of bioavailability. (this volume).

    Google Scholar 

  36. Schoonen, M.A.A., Xu, Y., and Strongin D.R. (1998). An introduction to geocatalysis. Journal of Geochemical Exploration 62, 201–215.

    Article  CAS  Google Scholar 

  37. Shebl, M.A. and Surdam, R.C. (1996). Redox reactions in hydrocarbon clastic reservoirs: experimental validation of this mechanism for porosity enhancement. Chemical Geology 132, 103–117.

    Article  CAS  Google Scholar 

  38. Shindo, H. (1992). Catalytic effect of volcanic ash on the formation of humic polymers in andosoils. Science of Total Environment 117 /118, 93–101.

    Article  Google Scholar 

  39. Steenbruggen, G. and Hollman, G.G. (1998). The synthesis of zeolites from fly ash and the properties of the zeolite products. Journal of Geochemical Exploration 62, 305–309.

    Article  CAS  Google Scholar 

  40. Stone. A.T. and Morgan, J.J. (1984). Reductive dissolution of manganese (III/IV) oxides by substituted phenols. Environmental Science and Technology 18, 450–456.

    Article  Google Scholar 

  41. Tannebaum, E. and Kaplan, I.R. (1985). Low MW hydrocarbons generated during pyrolysis of kerogen. Nature 317, 708–709.

    Article  Google Scholar 

  42. Tomita, K., Yamane, H., and Kawano, M. (1993). Synthesis of smectite from volcanic glass at low temperature. Clays and Clay Minerals 41, 655–661.

    Article  CAS  Google Scholar 

  43. Wolfe, T.A., Demirel, T., and Baumann, E.R. (1985). Interaction of aliphatic amines with montmorillonite to enhance adsorption of organic pollutants. Clays and Clay Minerals 33, 301–311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newton, J.P., Baveye, P., Spagnuolo, M. (1999). Reduction of the Bioavailability of PAHS in Heavily Contaminated Soils and Sediments Treated Via a Physico-Chemical Process. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics