Skip to main content

The Role of Plants in the Remediation of Contaminated Soils

Phytoremediation of Soils

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

Accumulation of organic or mineral micropollutants in soils and waters may alter the functioning of ecosystems and contaminate the food chain. The remediation of these contaminated environments by currently available physico-chemical methods is either costly or impossible. Phyto-remediation, i.e. remediation based on the use of plants, would be more economic and more environmentally friendly, leaving soil material without major alterations in biological properties. Living plant roots transform the soil environment through many processes including uptake of water and elements and release of organic compounds, i.e. exudates, in the surrounding soil. Presence of exudates stimulates the soil microflora and induces changes in the soil structure as well as in the mobility of mineral ions. Hence, plants significantly alter the fate of pollutants in soils, and are suitable candidates for management of contaminated soils, i.e. phytoremediation. Phytoremediation utilizes the numerous capabilities that plants have to change their close environment. Covering of contaminated soils by adapted plants, i.e. phytostabilisation, helps the stabilization of the soil surface, and reduces the risk of transport to water streams of pollutants adsorbedon the fine solid phase. Also, growing tolerant plants reduces the water movement into the soil profile, thus limiting the leaching of soluble pollutants. Plants have also the ability to extract and accumulate non-essential trace elements in their tissues making it possible to removed metals from polluted environments. Hyperaccumulators of metals are a specialized class of plants able to accumulate metals to very high concentrations (up to 1 % by dry weight) in their above-ground tissues. They proved to be efficient for removing significant amounts of metals from soils polluted by sewage sludge or industrial activities, with little changes in other soil properties, i.e. phytoextraction. Plants are not only a sink for pollutants, they exert changes in the compounds present in their rhizosphere. The release of exudates modifies the chemistry and physics of the soil and may subsequently alter the mobility of metals Enhanced microbial activity is also observed in the rhizosphere, which makes plants useful in the management of environments contaminated with organic pollutants. In soils and waters, pesticides and hydrocarbons are degraded at a rate that depends on molecule type, soil properties, and the state of the microflora. In presence of plants, the process of degradation of organic pollutants, e.g. pesticides and hydrocarbons, is accelerated. Extraction by plants of organic compounds at high rates has not been demonstrated uniquevoquely yet. Phyto-remediation can be suitable for many polluted sites, and research is underway to make this approach a routine technique for soil and water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, A.J.M. (1987) Metal tolerance, The New Phytologist 106, 93–111.

    CAS  Google Scholar 

  2. Baker, A.J.M. (1995) Metal hyperaccumulation by plants: our present knowledge of the ecophysiological phenomenon, in 14i11 Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology, Will Plants Have a Role in Bioremediation?, Columbia, MO, pp. 7–8.

    Google Scholar 

  3. Baker, A.J.M. and Brooks, R.R. (1989) Terrestrial higher plants which hyper-accumulate metallic elements-a review of their distribution, ecology and phytochemistry, Biorecovery 1, 81–126.

    CAS  Google Scholar 

  4. Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D., and Reeves, R.D. (1994a) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants, Resources, Conservation and Recycling 11, 41–49.

    Article  Google Scholar 

  5. Baker, A.J.M., Reeves, R.D., and Hajar, A.S.M. (1994b) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. C. Presl (Brassicaceae), The New Phytologist(in press).

    Google Scholar 

  6. Barber, D.A. and Martin, J.K. (1976) The release of organic substances by cereal roots into soil, The New Phytologist76, 69–80.

    Google Scholar 

  7. Billes, G. and Bottner, P. (1981) Living roots effect on 14C-labelled root litter decomposition, Plant andSoil6 2, 193–208.

    Google Scholar 

  8. Bradley, R., Burt, A.J., and Read, D.J. (1981) Mycorrhizal infection and resistance to heavy metal toxicity i n Calluna vulgaris, Nature London 292, 335–337.

    CAS  Google Scholar 

  9. Breisch, H. (1974) Contribution à l’étude du rôle des exsudats racinaires dans les processus d’agrégation des sols, Thèse de Doctorat de l’Université de Nancy 1, France

    Google Scholar 

  10. Brown, S.L., Chaney, R.L., Angle J.S., and Baker, A.J.M. (1994) Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc-and cadmium-contaminated soil, Journal of Environmental Quality 23, 1151–1157.

    Article  CAS  Google Scholar 

  11. Chaîneau, C.H. (1995) Devenir et effets des hydrocarbures dans le cas de l’épandage extensif de déblais de forage en agrosystème. Thèse de Doctorat de l’Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  12. Chaîneau C.H., Morel, J.L., and Oudot, J. (1995) Microbiological degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings, Environmental Science and Technology 29, 1615–1621.

    Article  Google Scholar 

  13. Chaîneau, C.H., Morel, J.L., and Oudot, J. (1996) Land treatment of oil based drill cuttings in an agricultural soil, Journal of Environmental Quality 4, 858–867.

    Article  Google Scholar 

  14. Chaîneau, C.H., Morel, J.L., and Oudot, J. (1997) Phytotoxicity and plant uptake of fuel oil hydrocarbons, Journal of Environmental Quality 26, 1478–1483.

    Article  Google Scholar 

  15. Chaney, R.L. (1983) Plant uptake of inorganic waste, in J.F. Parr, P.B. Marsh and J.M. Kia (eds.), Land Treatment of Hazardous Wastes, Noyes Data Corporation, Park Ridge, NJ, pp. 50–76

    Google Scholar 

  16. Chaney, R.L., Malika, M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S., and Baker, A.J.M. (1997) Phytoremediation of soil metals, Current Opinions in Biotechnology (in press).

    Google Scholar 

  17. Cornish, J.E., Goldberg W.C., Levine, R.S. and Benemann J.R. (1995) Phytoremediation of soils contaminated with toxic elements and radionuclides, in R.E. Hinchee, J.L. Means and D.R. Burris (eds.), Bioremediation of Inorganics, Batelle Press, Columbus, OH, pp. 55–63.

    Google Scholar 

  18. Cortez, J. and Billes, G. (1983). Rôle des ions calcium dans la formation du mucilage de Zea mays, Acta Oecologia, Oeclogia Plantarum 17, 67–68.

    Google Scholar 

  19. Cunningham, S.D. (1995) Phytoremediation of Pb contaminated soils and sludges, in 14th Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology, Will Plants Have aRole in Bioremediation?, Columbia, MO, pp. 47–48.

    Google Scholar 

  20. Cunningham, S.D. and Berti. W.R. (1993) Remediation of contaminated soils with green plants. An overview, ln Vitro Cell Dev. Biol. 29: 207–212.

    Google Scholar 

  21. Czupyrna, G., Mac Lean, A.I., Levy, R.D., and Gold, H. (1989) In-Situ Immobilization of Heavy Metal-Contaminated Soils, Noyes Data Corp.,Park Ridge, N.J.

    Google Scholar 

  22. Dec, J., Haider, K., Rangaswamy, V., Schäffer, A., Fernandes, E., and Bollag, J.M. (1997) Formation of soi-bound residues of cyprodinil and their plant uptake, Journal of Agriculture and Food Chemistry 45, 514–520.

    Article  CAS  Google Scholar 

  23. Durst, F. (1991) Métabolisation des herbicides, in Les herbicides - Mode d’action et principes d’utilisation, Editions INRA 193–236

    Google Scholar 

  24. Dushenkov, V., Kumar, P.B.A.N., Motto, H., and I. Raskin (1995) Rhizofiltration: The use of plants to remove metals from aqueous streams. Environmental Science and Technology 29, 1239–1245.

    Article  CAS  Google Scholar 

  25. Echevarria, G., Vong, P.C., Valentin-Ranc, C.,and Morel, J.L. (1994) Evolution of availability of Tc99 to rye grass grown on agricultural soil. pp. 561–570, In: Nuclear and Related Techniques in Soil/plant studies on Sustainable Agriculture and Environmental Preservation,International Symposium FAO/IAEA.

    Google Scholar 

  26. Echevarria, G., Klein, S., Fardeau, J.C., and Morel, J.L. (1997) Mesure de la fraction assimilable des éléments en traces du sol par la méthode des cinétiques d’échange isotopique: cas du nickel, Comptes Rendus de l’Académie des Sciences 324, 221–227.

    CAS  Google Scholar 

  27. Echevarria, G., Vong, P.C., Leclerc-Cessac, E., and Morel, J.L. (1997). Bioavailability of Technetium-99 as affected by plant species and growth, application form, and soil incubation. Journal of Environmental Quality 26, 947–956.

    Article  CAS  Google Scholar 

  28. Fletcher, J.S., Donnelly, P.K., and Hegde, R.S. (1995) Plant assisted polychlorinated biphenyl (PCB) degradation, in 14th Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology, Will Plants Have a Role in Bioremediation?, Columbia, MO, pp. 42–43.

    Google Scholar 

  29. Gardner, W.K., Parbery, D.G., and D.A. Barber (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement i n the soil/root interface is enhanced, Plant andSoil7 0, 107–114.

    CAS  Google Scholar 

  30. Gworek, B. (1992) Lead inactivation in soils by zeolites, Plant and Soil 143, 71–74.

    Article  CAS  Google Scholar 

  31. Habib, L. (1988) Etude de l’agrégation dans la rhizosphère du mais: rôle des mucilages racinaires. Thèse de Doctorat de l’Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  32. Habib, L., Chenu, C., Morel, J.L., and Guckert, A. (1990) Adsorption de mucilages racinaires sur des argiles homoioniques. Conséquences sur la micro-organisation des complexes formés, Comptes Rendus de l’Académie des Sciences 310, 1541–1546.

    Google Scholar 

  33. Helal, H.M. and Sauerbeck, D.R. (1983) Influence of plant roots on the stability of soil organic matter and of soil aggregates, in Transactions of the 13th Congress of the International Soil Science Society, 3, 776–777.

    Google Scholar 

  34. Helal, H.M. and Sauerbeck, D.R. (1989) Carbon turnover in the rhizosphere, Zeitschrift far Pflanzenernaehrung und Bodenkunde 1 52, 211–216.

    Article  Google Scholar 

  35. Hiltner, L. (1904) Über neuere Erfahrungen und Probleme auf dem gebiet der Bodenbakteriologie unter besonderer Berücksichtigun der Gründüngung und Brache, Arb. Deut. Letw. Ges. 98, 59–78.

    Google Scholar 

  36. Horst, W. J., Wagner, A., and Marschner, H. (1982) Mucilage protects root meristems from aluminium injury, Z. Pflanzenphysiol. Bd. 105, 435.

    CAS  Google Scholar 

  37. Jager, G. (1971) The effect of living roots and the rhizosphere microflora on the decomposition of soil organic matter, 4th Colloquium Pedobiolog ice, Lyon, INRA Publ.

    Google Scholar 

  38. Jenkinson, D.S. (1966) The priming action, in The use of isotopes in soil organic matter studies, Report for the FAO/IAEA, Braunschweig, Pergamon Press, New York, pp. 199–208.

    Google Scholar 

  39. Jenkinson, D.S. (1971) Studies on the decomposition of 14C labelled organic matter in soil, Soil Science 28, 424–434.

    Google Scholar 

  40. Kloskowski, R., Führ, F., and Mittelstaedt, W. (1992) Plant availability of bound anilazine residues in a degraded loess soil, Journal of Environmental Science Health 6, 487–505.

    Google Scholar 

  41. Kumar, P.B.A.N., Dushenkov, V., Motto, H., and Raskin, I. (1995) Phytoextraction: The use of plants to remove heavy metals from soils, Environmental Science and Technology 29, 1232–1238.

    Article  CAS  Google Scholar 

  42. Lee, E. and Banks, M.K. (1993) Bioremediation of petroleum contaminated soil using vegetation: A microbial study, Journal of Environmental Science Health 28, 2187–2198.

    Google Scholar 

  43. Lee, J.K., Führ, F., and Kyung, K.S. (1996) Fate of the herbicide bentazon in rice plant-grown lysimeters over four consécutive cultivation years, Journal of Environmental Science Health 2, 179–201.

    Article  Google Scholar 

  44. Leeper, G.W. (1978) Managing the Heavy Metals on the Land, Marcel Dekker, New York.

    Google Scholar 

  45. McKenzie, R.M. (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron, Australian Journal of Soil Research 18, 61–73.

    Article  CAS  Google Scholar 

  46. Marschner, H., Römheld, V., and Kissel, M. (1986) Different strategies in higher plants in mobilization and uptake of iron, Journal of Plant Nutrition 9, 695.

    Article  CAS  Google Scholar 

  47. Marschner, H. (1985) Mineral nutrition in higher plants, Academic Press, London, 674 p.

    Google Scholar 

  48. Mench, M. (1985) Influence des exsudats racinaires solubles sur la mobilité des métaux lourds dans la rhizosphère du maïs,Thèse de Doctorat de l’Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  49. Mench M., Vangronsveld, J., Didier, V., and Clijsters, H. (1994) Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil, Environmental Pollution 86, 279–286.

    Article  CAS  Google Scholar 

  50. Morel, J.L. (1985) Contribution à l’étude du transfert sol-plante des métaux lourds: le rôle des mucilages racinaires,Thèse de Doctorat es Sciences, Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  51. Morel, J.L. (1995) Root exudates and metal mobilization in soils, in 141h Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology, Will Plants Have a Role in Bioremediation?, Columbia, MO, pp. 31–32.

    Google Scholar 

  52. Morel, J.L. (1997) Bioavailability of trace elements to terrestrial plants. in J. Tarradellas, G.Bitton and D. Rossel (eds.), Soil Ecotoxicology, Lewis Publishers, Boca Raton, Fl.

    Google Scholar 

  53. Morel, J.L. and Guckert, A. (1981) Influence of limed sludge on soil organic matter and soil physical properties, in G. Catroux and P. L’hermite, (eds.), The influence of sewage sludge on physical and biological properties of soils, Reidel Publishing Company, Dordrecht Holland, pp 25–42.

    Google Scholar 

  54. Morel J.L., Mench, M., and Guckert, A. (1986) Measurement of Pb2+, Cu2` and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots, Biology and Fertility of Soils, 2, 29–34.

    Article  Google Scholar 

  55. Morel, J.L. 1993 Rhizosphere: influence of root exudates on soil aggregation, in Encyclopedia of Science and Technology, Mac Graw Hill Press, Yearbook 1993, pp 367–370.

    Google Scholar 

  56. Morel JL, Habib L, Plantureux S, and Guckert, A. (1991) Influence of maize root mucilage on soil aggregate stability, Plant andSoi11 36, 111–119.

    Google Scholar 

  57. Morel, J.L., Bitton, G., Schwartz, C., and Schiavon, M. (1997) Bioremediation of soils and waters contaminated with micropollutants: which role for plants ?, in J.T. Zelikoff (ed.), Ecotoxicology: responses, biomarkers and risk assessment, OECD Workshop, SOS Publications, Fair Haven, NJ, USA, pp. 37–74.

    Google Scholar 

  58. Oudot, J. (1984) La dégradation microbienne des hydrocarbures: étude du potentiel de biodégradation et de son expression dans le milieu, Thèse de Doctorat es Sciences, Université de Paris V II.

    Google Scholar 

  59. Paterson, S., Mackay, D., Tam, D., and Shiu, W.Y. (1990) Uptake of organic chemicals by plants: Review of processes, correlations and models, Chemosphere 21, 297–331.

    Article  CAS  Google Scholar 

  60. Perronnet, K. (1997) Comportement du système racinaire de plantes hyperaccumulatrices en fonction de la localisation et du la nature du métal dans le sol, DEA de Sciences Agronomiques, Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  61. Pietz, R.I., Carlson Jr., C.R., Peterson, J.R., Zenz, D.R. and Lue-Hing, C. (1989) Application of sewage sludge and other amendments to coal refuse material: II. Effects on revegetation, Journal of Environmental Quality 18, 169–173.

    Article  CAS  Google Scholar 

  62. Raveton, M., Ravanel, P., Serre, A-M., Nuri,t F., and Tissut M. (1997) Kinetics of uptake and metabolism of atrazine in model plant systems, Pesticide Scicence 49, 157–163.

    CAS  Google Scholar 

  63. Rovira, A.D., Foster, R.C., and Martin, J.K. (1979) Origin, Nature and Nomenclature of the organic materials in the rhizosphere, in J.L. Harley and R.S. Russell (eds.), The Soil Root Interface, Academic Press, pp. 1–4

    Google Scholar 

  64. Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., and Raskin I. (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants, BiolTechnology 13, 468–474.

    Article  CAS  Google Scholar 

  65. Scheunert, I. and Parlar, H. (1992) Fate of pesticides in plant and in soil fauna, in Terrestrial behavior of pesticides, Springer-Verlag (ed.), 77–103.

    Google Scholar 

  66. Schiavon, M., Jacquin, F. and Goussault, C. (1977) Blocage de molécules striaziniques par la matière organique, International Atomic Energy Agency Vienna, 1977, SM-211/78, 327–332.

    Google Scholar 

  67. Schroll, R., Lanfenbach, T., Cao, G., Dörfler, U., Schneider, P., and Scheunert, I. (1992) Fate of [4C]terbutylazinein soil-plant systems, The Science of the Total Environment 123/ 124, 377–389.

    Article  Google Scholar 

  68. Schnoor, J.L., Light, L.A., McCutcheon, S.C., Wolfe, N.L., and Carreira, L.H. (1995) Phytoremediation of organic and nutrient contaminants, Environmental Science andTechnology 29, 318A - 323A.

    CAS  Google Scholar 

  69. Schwartz, C. (1997) Comportement de Thlaspi caerulescens dans les sols pollués système sol plante et potentiel dans la phytoremédiation des sols pollués, Thèse de Doctorat de l’Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  70. Schwartz, C. and J.L. Morel (1997a) Growth of Thlaspi caerulescens and uptake of metals on various contaminated materials. (in preparation)

    Google Scholar 

  71. Schwartz, C., Saumier, S., Whiting, S.N., Baker, A.J.M., and Morel, J.L. (19976) Development of the root system of the Zn-hyperaccumulator Thlaspi caerulescens and changes in the rhizosphere pH as affected by metal origin, content and localization i n soil, Environmental Science and Technology (submitted)

    Google Scholar 

  72. Shallari, S. (1997) Biodisponibilité du nickel des sols pour l’hyperaccumulateur Alyssum murale, Thèse de Doctorat de l’Institut National Polytechnique de Lorraine, Nancy, France.

    Google Scholar 

  73. Shann, J.R. and Boyle, J.J. (1994) Influence of plant species on in situ rhizosphere degradation, in T.A. Anderson and J.R. Coats (eds.), Bioremediation though Rhizosphere Technology, ACS Symposium Series #. 563, Amer. Chem. Soc., Washington, D.C., pp. 70–81.

    Google Scholar 

  74. Shende, A., Juwarkar, A.S., and Dara, S.S. (1994) The use of fly-ash in reducing heavy metal toxicity to plants, Resources Conservation and Recycling 12, 221–228.

    Article  Google Scholar 

  75. Sims, R.C., Sims, J.L., Sorensen, D.L., McLean, J., Mahmood, R., and Dupont, R.R. (1985) Review of in-place treatment techniques for contaminated surface soil, vol. 1, Technical Evaluation, National Technical Information Service, PB 85–124 881.

    Google Scholar 

  76. Smeulders, F., Sinnaeve, J., and Cremers, A. (1983) In situ immobilization of heavy metals with tetraethylenepentaminde (tetren) in natural soils and its effect on toxicity and plant growth, Plant andSoil7 0, 49–57.

    CAS  Google Scholar 

  77. Smith, R.A.H. and Bradshaw, A.D. (1979) The use of metal tolerant plant populations for the reclamation of metalliferous wastes, Journal of Applied Ecology 16, 595–612.

    Article  CAS  Google Scholar 

  78. Steffens, J.C. (1990) The heavy metal-binding peptides of plants, Annual Reviews on Plant Physiology and Molecular Biology 41, 553–575.

    Article  CAS  Google Scholar 

  79. Tasli, S. (1995) Devnir de l’atrazine en culture de mais: étude en plein champ - site de la Côte Saint André, Isère, France - et au laboratoire, Thèse de Doctorat de l’Université de Grenoble I, 188 p.

    Google Scholar 

  80. Taylor, G.J. (1987) Exclusion of metals from the symplasm: A possible mechanism of metal tolerance in higher plants, Journal of Plant Nutrition 10, 1213–1222.

    Article  CAS  Google Scholar 

  81. Vangronsveld, J., Sterckx, J., Van Assche, F., and Clijsters H. (1995) Rehabilitation studies on a old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite, Journal of Geochemical Exploration 52, 221–229.

    Article  CAS  Google Scholar 

  82. Walton, B.T. and Anderson, T.A. (1990) Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites, Applied Environmental Microbiology 56, 1012–1016.

    CAS  Google Scholar 

  83. Walton, B.T., Hoylman, A.M., Perez, M.M., Anderson T.A., Johnson T.R., Guthrie E.A., and Christman, R.F. (1994) Rhizosphere microbial communities as a plant defense against toxic substances in soils, in T.A. Anderson and J.R. Coats (eds.), Bioremediation though Rhizosphere Technology, ACS Symposium Series # 563, Amer. Chem. Soc., Washington, D.C., pp. 82–92.

    Google Scholar 

  84. Warembourg, F.R. (1977) Les flux de carbone dans la végétation, la rhizosphère et le sol de formations herbacées marquées avec du ‘4C, Thèse de Doctorat es Sciences, Université de Montpellier, France.

    Google Scholar 

  85. Warembourg, F.R. and Billes, G. (1979) Estimating carbon transfer in the rhizosphere, in J.L. Harley and R.S. Russell (eds.), The Soil Root Interface, Academic Press, pp. 183–197.

    Google Scholar 

  86. Weissenhorn, I., Mench, M., and Leyval, C. (1995) Bioavailability of heavy metals and arbuscular mycorrizha in a sewage sludge-amended sandy soil, Soil Biology and Biochemistry 27, 287–286.

    Article  CAS  Google Scholar 

  87. Wild, S.R. and Jones, K.C. (1992) Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil, Jounal of Environmental Quality 21, 217–225.

    Article  CAS  Google Scholar 

  88. Wu, Q.T., Morel, J.L., and Guckert, A. (1989) Influence de la forme de l’azote combiné sur le transfert sol-plante du cadmium. Comptes Rendus de l’Académie des Sciences 309, 215–220.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morel, J.L., Chaineau, C.H., Schiavon, M., Lichtfouse, E. (1999). The Role of Plants in the Remediation of Contaminated Soils. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics