Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

  • 413 Accesses

Abstract

To become “available” to a target organism, organic xenobiotics in subsurface environments have to satisfy at least one of a number of conditions. They have to be able to migrate themselves to the immediate vicinity of the organism. Alternatively, extracellular enzymes or surfactants released by the organism have to reach the xenobiotic molecules, wherever they are located, and the products of their interaction have to migrate back to the organism. In any of these situations, chemical compounds (xenobiotic molecules, exoenzymes, biosurfactants, and reaction products) are moving in the liquid phase within the pores of the subsurface material. During this transport, the molecules in motion are subjected to an array of concurrent physical processes (e.g., dispersion, mass flow of the liquid phase, immiscible displacement), all of which can affect significantly the motion of the molecules, and ultimately how available the xenobiotics will be to the target organism. The present chapter provides an overview of these different physical processes. The focus is purposedly on the physics of the processes rather than on their mathematical description, in an attempt to keep this chapter accessible to scientists who come to the bioavailability debate from the biology side and may therefore not be entirely familiar with the mathematical tools traditionally used in the literature on transport phenomena in natural porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. (1994) Biodegradation and Bioremediation, Academic Press, Inc., NY.

    Google Scholar 

  2. Allen, M.J. and Morrison, S.M. (1973) Bacterial movement through fractured bedrock, Ground Water 11, 6–10.

    Article  Google Scholar 

  3. Bales, R.C., Gerba, C.P., Grondin, G.H. and Jensen, S.L. (1989) Bacteriophage transport in sandy soil and fractured tuff, Applied and Environmental Microbiology 55, 2061–2067.

    Google Scholar 

  4. Bales, R.C. Li, S., Maguire, K.M., Yahya, M.T., Gerba, C.P. and Harvey, R.W. (1995) Virus and bacteria transport in a sandy aquifer, Cape Cod, MA, Ground Water 33, 653–661

    Article  CAS  Google Scholar 

  5. Ball, W.P. and Roberts, P.V. (1991a) Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium, Environmental Science and Technology 25, 1223–1236.

    Article  CAS  Google Scholar 

  6. Ball, W.P. and Roberts, P.V. (1991b) Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion, Environmental Science and Technology 25, 1237–1249.

    Article  CAS  Google Scholar 

  7. Baughman, G.L. and Paris, D.F. (1981) Microbial bioconcentration of organic pollutants from aquatic systems–A critical review, CRC Critical Reviews in Microbiology 7, 205–228.

    Article  Google Scholar 

  8. Baveye, P. and Valocchi, A. (1989) An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers, Water Resources Research 25, 1413–1421.

    Article  CAS  Google Scholar 

  9. Bedient, P.B., Rifai, H.S. and Newell, C.J. (1994) Ground Water Contamination: Transport and Remediation, PTR Prentice-Hall, Inc., Englewood Cliffs, NJ.

    Google Scholar 

  10. Bellin, C.A. and Rao, P.S.C. (1993) Impact of bacterial biomass on contaminant sorption and transport in a subsurface soil, Applied and Environmental Microbiology 59, 1813–1820.

    CAS  Google Scholar 

  11. Bouchard, D.C., Enfield, C.G. and Piwoni, M.D. (1989) Transport processes involving organic chemicals, in B.L. Sawhney and K. Brown (eds.), Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America (Madison, WI) Special Publication no. 22, p. 349–371.

    Google Scholar 

  12. Bouchez, M., Blanchet, D. and Vandecasteele, J.-P. (1995) Substrate availability in phenanthrene biodegradation: Transfer mechanism and influence on metabolism, Applied Microbiology and Biotechnology 43, 952–960.

    Article  CAS  Google Scholar 

  13. Brewster, M.L., Annan, A.P., Greenhouse, J.P., Kueper, B.H., Olhoeft, G.R., Redman, J.D., and Sander, K.A. (1995) Observed migration of a controlled DNAPL release by geophysical methods, Ground Water 33, 977–987.

    Article  CAS  Google Scholar 

  14. Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids, 2nd edition, Clarendon Press, Oxford, UK.

    Google Scholar 

  15. Champ, D.R. and Schroeter, J. (1988) Bacterial transport in fractured rock–A field-scale tracer test at the Chalk River Nuclear Laboratories, Water Science and Technology 20, 81–87.

    CAS  Google Scholar 

  16. Cohen, R.M. and Mercer, J.W. (1993) DNAPL Site Characterization, CRC Press, Boca Raton, FL.

    Google Scholar 

  17. Conrad, S.H., Wilson, J.L., Mason, W.R. and Peplinski, W.J. (1992) Visualization of residual organic liquid trapped in aquifers, Water Resources Research 28, 467–478.

    Article  CAS  Google Scholar 

  18. Cruden, D.L., Wolfram, J.H., Rogers, R.D. and Gibson, D.T. (1992) Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium, Applied and Environmental Microbiology 58, 2723–2729.

    CAS  Google Scholar 

  19. Crank, J. (1975) The Mathematics of Diffusion, 2nd edition, Clarendon Press, Oxford, UK.

    Google Scholar 

  20. Cussler, E.L. (1984) Diffusion, Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  21. Degueldre, C. (1993) Colloid properties in granitic groundwater systems, with emphasis on the impact on safety assessment of a radioactive waste repository, in C.G. Interrante and R.T. Pabalan (eds.), Scientific Basis for Nuclear Waste Management XVI, Materials Research Society Symposium Proceedings 294, 817–823.

    Google Scholar 

  22. Degueldre, C., Baeyens, B., Goerlich, W., Riga, J., Verbist, J. and Stadelmann, P. (1989) Colloids in water from a subsurface fracture in granitic rock, Grimsel Test Site, Switzerland, Geochimica et Cosmochimica Acta 53, 603–610.

    Article  CAS  Google Scholar 

  23. de Smet, M.-J., Kingma, J., Wynberg, H. and Witholt, B. (1983) Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons: Growth, morphology and conversion characteristics in different two-phase systems, Enzyme and Microbial Technology 5, 352–360.

    Google Scholar 

  24. Domenico, P.A. and Schwartz, F.W. (1997) Physical and Chemical Hydrogeology, 2nd edition, John Wiley Sons, Inc., New York.

    Google Scholar 

  25. Dunnivant, F. M., Jardine, P.M., Taylor, D.L. and McCarthy, J.F. (1992) Cotransport of cadmium and hexachlorobiphenyl by dissolved organic carbon through columns containing aquifer material, Environmental Science Technology 26, 360–368.

    Article  CAS  Google Scholar 

  26. Enfield, C.G. and Bengtsson, G. (1988) Macromolecular transport of hydrophobic contaminants in aqueous environments, Ground Water 26, 64–70.

    Article  CAS  Google Scholar 

  27. Enfield, C.G., Bengtsson, G. and Lindqvist, R. (1989) Influence of macromolecules on chemical transport, Environmental Science Technology 23, 1278–1286.

    Article  CAS  Google Scholar 

  28. Fetter, C.W. (1993) Contaminant Hydrogeology, Macmillan Publishing Company, New York, NY.

    Google Scholar 

  29. Foster, S.S.D. (1975) The chalk groundwater tritium anomaly–A possible explanation, J. Hydrology 25, 159–165.

    Article  Google Scholar 

  30. Garbarini, D.R. and Lion, L.W. (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene, Environmental Science Technology 20, 1263–1269.

    Article  CAS  Google Scholar 

  31. Gelhar, L.W., Welty, C. and Rehfeldt, K.R. (1992) A critical review of data on field-scale dispersion in aquifers, Water Resources Research 28, 1955–1974.

    Article  CAS  Google Scholar 

  32. G6mez-Lahoz, C., Delgado, R.G., Maroto, J.M.R. and Wilson, D.J. (1996) Cleanup of fractured rock aquifers. II. Effects of matrix diffusion and nonaqueous phase liquid

    Google Scholar 

  33. Grisak, G.E., Pickens. J.F. and Cherry, J.A. (1980) Solute transport through fractured media. 2. Column study of fractured till, Water Resources Research 16, 731–739.

    Google Scholar 

  34. Gschwend, P.M. and Reynolds, M.D. (1987) Monodisperse ferrous phosphate colloids in an anoxic groundwater plume, J. Contaminant Hydrology 1, 309–327.

    Article  CAS  Google Scholar 

  35. Gu, B., Mehlhorn, T.L., Liang, L. and McCarthy, J.F. (1996a) Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption, Geochimica et Cosmochimica Acta 60, 1943–1950.

    Article  CAS  Google Scholar 

  36. Gu, B., Mehlhorn, T.L., Liang, L. and McCarthy, J.F. (1996b) Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport, Geochimica et Cosmochimica Acta 60, 2977–2992.

    Article  CAS  Google Scholar 

  37. Hamaker, J.W. (1972) Diffusion and volatilization, in C.A.I. Goring and J.W. Hamaker (eds.), Organic Chemicals in the Soil Environment, Marcel Dekker, Inc., NY, p. 341–397.

    Google Scholar 

  38. Harmon, T.C. and Roberts, P.V. (1994) Comparison of intraparticle sorption and desorption rates for a halogenated alkene in a sandy aquifer material, Environmental Science Technology 28, 1650–1660.

    Article  CAS  Google Scholar 

  39. Harvey, R.W., George, L.H., Smith, R.L and LeBlanc, D.R. (1989) Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural-and forced-gradient tracer experiments, Environmental Science Technology 23, 51–56.

    Article  CAS  Google Scholar 

  40. Harvey, R.W., Kinner, N.E., MacDonald, D., Metge, D.W. and Bunn, A. (1993) Role of physical heterogeneity in the interpretation of small-scale laboratory and field observations of bacteria, microbial-sized microsphere, and bromide transport through aquifer sediments, Water Resources Research 29, 2713–2721.

    Article  CAS  Google Scholar 

  41. Harvey, R.W., Smith, R.L. and George, L. (1984) Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer, Applied and Environmental Microbiology 48, 1197–1202.

    CAS  Google Scholar 

  42. Hayduk, W. and Laudie, H. (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions, American Institute Chemical Engineers J. 20, 611–615.

    Article  CAS  Google Scholar 

  43. Hazen, T.C., Jiménez, L., de Victoria, G.L. and Fliermans, C.B. (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater, Microbial Ecology 22, 293–304.

    Article  Google Scholar 

  44. Jenkins, M.B. and Lion, L.W. (1993) Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media, Applied and Environmental Microbiology 59, 3306–3313.

    CAS  Google Scholar 

  45. Johnson, R.L., Cherry, J.A. and Pankow, J.F. (1989) Diffusive contaminant transport in natural clay: A field example and implications for clay-lined waste disposal sites, Environmental Science Technology 23, 340–349.

    Article  CAS  Google Scholar 

  46. Johnson, T.A., Sims, G.K., Ellsworth, T.R., and Ballance, A.R. (1998). Effects of moisture and sorption on bioavailability of p-hydroxy-benzoic acid to Arthrobacter sp. in soil. Microbiol. Res. 153, 349–353.

    Article  CAS  Google Scholar 

  47. Jorgensen, P.R. and Fredericia, J. (1992) Migration of nutrients, pesticides and heavy metals in fractured clayey till, Géotechnique 42, 67–77.

    Article  Google Scholar 

  48. Jury, W. A. and Ghodrati, M. (19889) Overview of organic chemical environmental fate and transport modeling approaches, in B.L. Sawhney and K. Brown (eds.), Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America (Madison, WI) Special Publication no. 22, p. 271–304.

    Google Scholar 

  49. Kölbel-Boelke, J., Anders. E.-M. and Nehrkorn, A. (1988) Microbial communities in the saturated groundwater environment II: Diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities, Microbial Ecology 16, 31–48.

    Google Scholar 

  50. Klotz, D., Seiler, K.-P., Moser, H. and Neumaier, F. (1980) Dispersivity and velocity relationship from laboratory and field experiments, J. Hydrology 45, 169–184.

    Article  Google Scholar 

  51. Knox, R.C., Sabatini, D.A. and Canter, L.W. (1993) Subsurface Transport and Fate Processes, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  52. Kresic, N. (1997) Quantitative Solutions in Hydrogeology and Groundwater Modeling, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  53. Li, Y.-H. and Gregory, S. (1974) Diffusion of ions in sea water and in deep-sea sediments, Geochimica et Cosmochimica Acta 38, 703–714.

    Article  CAS  Google Scholar 

  54. Lindqvist, R. and Enfield, C.G. (1992) Biosorption of dichlorodiphenyltrichloroethane and hexachlorobenzene in groundwater and its implications for facilitated transport, Applied and Environmental Microbiology 58, 2211–2218.

    CAS  Google Scholar 

  55. Mackay, D.M., Freyberg, D.L. and Roberts, P.V. (1986) A natural gradient experiment on solute transport in a sand aquifer. 1. Approach and overview of plume movement, Water Resources Research 22, 2017–2029.

    Article  CAS  Google Scholar 

  56. Mackay, D.M., Roberts, P.V. and Cherry, J.A. (1985) Transport of organic contaminants in groundwater, Environmental Science Technology 19, 384–392.

    Article  CAS  Google Scholar 

  57. Magee, B.R., Lion, L.W. and Lemley, A.T. (1991) Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media, Environmental Science Technology 25, 323–331.

    Article  CAS  Google Scholar 

  58. McCarthy, J.F. and Zachara, J.M. (1989) Subsurface transport of contaminants, Environmental Science Technology 23, 496–502.

    CAS  Google Scholar 

  59. McKay, L.D., Gillham, R.W. and Cherry, J.A. (1993) Field experiments in a fractured clay till. 2. Solute and colloid transport, Water Resources Research 29, 3879–3890.

    Article  CAS  Google Scholar 

  60. Mercer, J.W. and Cohen, R.M. (1990) A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation, J. Contaminant Hydrology 6, 107–163.

    Article  CAS  Google Scholar 

  61. Miller, C.T., Christakos, G., Imhoff, P.T., McBride, J.F., Pedit, J.A. and Trangenstein, J.A. (1998) Multiphase flow and transport modeling in heterogeneous porous media: Challenges and approaches, Advances in Water Resources 21, 77–120.

    Article  Google Scholar 

  62. Nye, P.H. and Tinker, P.B. (1977) Solute Movement in the Soil-Root System (Studies in Ecology 4 ), Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  63. Ouyang, Y., Shindy, D., Mainsail, R.S. and Harris, W. (1996) Colloid-enhanced transport of chemicals in subsurface environments: A review, Critical Reviews in Environmental Science and Technology 26, 189–204.

    Article  CAS  Google Scholar 

  64. Parker, B.L., Gillham, R.W. and Cherry, J.A. (1994) Diffusive disappearance of immiscible-phase organic liquids in fractured geologic media, Ground Water 32, 805–820.

    Article  CAS  Google Scholar 

  65. Perkins, T.K. and Johnson, O.C. (1963) A review of diffusion and dispersion in porous media, Society Petroleum Engineers 13, 70–84.

    Google Scholar 

  66. Roberts, P.V., Goltz, M.N. and Mackay, D.M. (1986) A natural gradient experiment on solute transport in a sand aquifer. 3. Retardation estimates and mass balances for organic solutes, Water Resources Research 22, 2047–2058.

    Article  CAS  Google Scholar 

  67. Roy, S.B. and Dzombak, D.A. (1997) Chemical factors influencing colloid-facilitated transport of contaminants in porous media, Environmental Science Technology 31, 656–664.

    Article  CAS  Google Scholar 

  68. Ryan, J.N. and Gschwend, P.M. (1990) Colloid mobilization in two Atlantic Coastal Plain aquifers: Field studies, Water Resources Research 26, 307–322.

    Article  CAS  Google Scholar 

  69. Schwarzenbach, R.P., Gschwend, P.M. and Imboden, D.M. (1993) Environmental Organic Chemistry, John Wiley Sons, Inc., NY.

    Google Scholar 

  70. Shackelford, C.D. (1991) Laboratory diffusion testing for waste disposal–A review, J. Contaminant Hydrology 7, 177–217.

    Article  CAS  Google Scholar 

  71. Stockmeyer, M.R., Madsen, F.T. and Kahr, G. (1995) Contaminant transport in organophilic waste deposit liners, Hazardous Waste Hazardous Materials 12, 149–166.

    Article  CAS  Google Scholar 

  72. Stumm, W. and Morgan, J.J. (1981) Aquatic Chemistry, John Wiley Sons, Inc., NY.

    Google Scholar 

  73. Tsetses, M. and Bell, J.P. (1989) Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass, Water Research 23, 561–568.

    Article  Google Scholar 

  74. Tucker, W. A. and Nelken, L.H. (1990) Diffusion coefficients in air and water, in W.J. Lyman, W.F. Reehl and D.H. Rosenblatt (eds.), Handbook of Chemical Property Estimation Methods, 2nd edition, American Chemical Society, Washington, DC, p. 17–1–17–25.

    Google Scholar 

  75. Wolfaardt, G.M., Lawrence, J.R., Headley, J.V., Robarts, R.D. and Caldwell, D.E. (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants, Microbial Ecology 27, 279–291.

    Article  CAS  Google Scholar 

  76. Wood, W.W., Kraemer, T.F and Hearn, P.P. Jr. (1990) Intragranular diffusion: An important mechanism influencing solute transport in clastic aquifers? Science 247, 1569–1572.

    Article  CAS  Google Scholar 

  77. Yates, M.V. and Yates, S.R. (1988) Modeling microbial fate in the subsurface environment, CRC Critical Reviews in Environmental Control, 17 307–344.

    Article  Google Scholar 

  78. Zheng, C. and Bennett, G.D. (1995) Applied Contaminant Transport Modeling, Van Nostrand Reinhold, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoyle, B.L., Baveye, P. (1999). Transport of Organic Xenobiotics in the Environment. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics