Skip to main content

Bioavailability of Organic Xenobiotics in the Environment

A Critical Perspective

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

The bioavailability of organic xenobiotics in the environment is currently the object of considerable attention from scientists, environmental activists, and policy makers. Yet, in the literature that this interest has stimulated in recent years, the concept of bioavailability itself is seldom defined precisely, with the result that different definitions are used by different people. In the present chapter, we attempt to provide a set of definitions of biovailability, and to relate these definitions to the concepts of exposure and dose traditionally used in (eco)toxicology. Assumptions used to assess the bioavailability of xenobiotics in soils and sediments are critically reviewed, as well as the experimental evidence concerning changes in bioavailability over time (aging). Based on a number of recent publications, it is argued that the key determinant of the bioavailability of organic xenobiotics in subsurface environments is not the (supposedly fixed) rate of their release by the soil matrix but instead the ability of microbial cells and higher organisms to act as sinks for these compounds. This viewpoint is supported by experiments carried out with near-perfect sinks (resin beads), which have shown limited aging of organic xenobiotics and heavy metals in soils. The “sink theory” of the bioavailability of organic xenobiotics, introduced in this chapter, has a number of very practical consequences, in particular in terms of environmental policy decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, C. C., Frederickson, J. K., and Smith, S. C. (1993). Effect of sorption on the degradation of aromatic acids and bases. in D. M. Linn, T. H. Carski, M. L. Brusseau and F.-H. Chang (eds.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil, SSSA Special Publication No. 32, Madison, Wisconsin, pp. 125–144.

    Google Scholar 

  2. Alexander, M. (1997). Sequestration and bioavailability of organic compounds in soil. in D.G. Linz and D.V. Nakles (eds.) Environmentally acceptable endpoints in soil. American Academy of Environmental Engineers, Annapolis, Maryland.

    Google Scholar 

  3. Baath, E. (1989) Effects of heavy metals in soil on microbial processes and populations (A review). Water, Air, and Soil Pollution 47, 335–379.

    Article  CAS  Google Scholar 

  4. Barber, S.A. (1984). Soil nutrient bioavailability. A mechanistic approach. John Wiley Sons, New York.

    Google Scholar 

  5. Beck, A.J., Wilson, S.C., Alcock, R.E., and Jones, K.C. (1995). Kinetic costraints on the loss of organic chemicals from contaminated soils: Implications for soil-quality limits. Crit. Rev. Environ. Sci. Technol. 25 (1), 1–43.

    Article  CAS  Google Scholar 

  6. Beck, A. J., Johnson, D.L., and Jones, K.C. (1996). The form and bioavailability of nonionic organic chemicals in sewage sludge-amended agricultural soils. Science of the Total Environment 185, 125–149.

    Article  CAS  Google Scholar 

  7. Bosma, T.N.P. (1994). Simulation of subsurface biotransformation. Unpublished Ph.D. dissertation. Agricultural University. Wageningen, The Netherlands.

    Google Scholar 

  8. Bosma, T.N.P. (1995). Rate limiting steps in bioremediation. in A. J. B. Zehnder (ed.), Proceedings of the SCOPE Workshop on Soil and Groundwater Pollution, Kluwer Academic Publishers, Amsterdam, pp. 150–154.

    Google Scholar 

  9. Bosma, T.N.P., Middeldorp, P.J.M., Schraa, G., and Zehnder, A.J.B. (1997). Mass transfer limitation of biotransformation: quantifying bioavailability. Environ. Sci. Technol. 31, 248–252.

    Article  CAS  Google Scholar 

  10. Callahan C.A. (1988). Earthworms as ecotoxicological assessment tools. In C.A. Edwards and E.F. Neuhauser (eds.) Earthworms in waste and environmental management, pp. 295–301. Academic Publishing. The Hague, The Netherlands.

    Google Scholar 

  11. Callahan C.A., Russell L.K., and Peterson S.A. (1985). A comparison of three earthworm bioassay procures for the assessment of environmental samples containing hazardous wastes. Biol. Fert. Soils. 1, 195–200.

    Article  CAS  Google Scholar 

  12. Calvet, R. (1988). Analyse du concept de biodisponibilité d’une substance dans le sol. Science du Sol 26, 183–203.

    CAS  Google Scholar 

  13. Cookson, J.T., Jr. (1995). Bioremediation engineering: Design and application. McGraw-Hill, Inc., New York.

    Google Scholar 

  14. Cornelissen, G., van Zuilen, H., and van Noort, P.C.M. (1999). Particle size dependence of slow desorption of in situ PAHs from sediments. Chemosphere 38, 2369–2380.

    Article  CAS  Google Scholar 

  15. Davis B.N.K. (1971). Laboratory studies on the uptake of Dieldrin and DDT by earthworms. Soil Biol. Biochem. 3, 221–233.

    Article  CAS  Google Scholar 

  16. Dec, J., and Bollag, J.-M. (1997). Determination of covalent and noncovalent binding interactions between xenobiotic chemicals and soil. Soil Sci. 162, 858–874.

    Article  CAS  Google Scholar 

  17. Dickson K.L., Giesy J.P., Parrish R., and Wolfe L. (1994). Summary and conclusions. In J.L.Hamelink, P.F. Landrum, H.L. Bergman, and W.H. Benson (eds.), Bioavailability: physical, chemical, and biological interactions, Lewis Publishers, Boca Raton, Florida, pp. 221–230.

    Google Scholar 

  18. Edwards C.A. and Lofty J. R. (1977). Biology of earthworms. Chapman and Hall, London.

    Book  Google Scholar 

  19. Eijsackers, H. (1998). Soil ecotoxicological risk assessment: How to find avenues in a pitch dark labyrinth. in J.P Seiler, J.L. Autrup, and H. Autrup (eds.) Diversification in toxicology–Man and environment, Springer, Berlin, pp. 83–96.

    Chapter  Google Scholar 

  20. El-Din Sharabi, N., and Bartha, R. (1993). Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution. Appl. Environ. Microbio. 59, 1201–1205.

    CAS  Google Scholar 

  21. Fisher S.W. (1984). A comparison of standardize methods for measuring the biological activity of pesticides to the earthworm, Lumbricus terrestris. Ecotox. Environ. Safety. 8, 564–571.

    Article  CAS  Google Scholar 

  22. Fries G.F and Marrow G.S. (1992). Influence of soil properties on the uptake of hexachlorabiphenyls by rats. Chemosphere. 24, 109–113.

    Article  CAS  Google Scholar 

  23. Hatzinger, P.B., and Alexander, M. (1995). Effect of aging of chemicals on their biodegradability and extractability. Environ. Sci. Technol. 29 (2), 537–545.

    Article  CAS  Google Scholar 

  24. Heinemeyer, O., Insam, H., Kaiser, E.A., and Walenzik, G. (1989). Soil microbial biomass and respiration measurements: an automated technique based on an infra-red gas analysis. Plant and Soil 116, 191–195.

    Article  Google Scholar 

  25. Herrick, J.B., Stuart-Keil, K.G., Ghiorse, W.C., and Madsen, E.L. (1997). Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl. Environ. Microbio. 63, 2330–2337.

    CAS  Google Scholar 

  26. Hess T.F. and Schmidt S.K. (1995). Improved procedured for obtaining statistically valid parameter estimates from soil respiration data. Soil Biol. Biochem. 27, I - 7.

    Article  Google Scholar 

  27. Johnson, D.L., and Jones, K.C. (1998). Are aged polycyclic aromatic hydrocarbons ( PAHs) in sewage sludge treated soils available?. Unpublished manuscript.

    Google Scholar 

  28. Kadry, A.M., Turkall, R.M., Skowronski, and Abdel-Rahman, M.S. (1991) Soil adsorption alters kinetics and bioavailability of trichloroethylene in orally exposed female rats. Toxicol. Lett. 58, 337–346.

    CAS  Google Scholar 

  29. Kaplan, D.L., Hartenstein, R., Neuhauser, E.F., and Malecki, M.R. (1980). Physicochemical requirements in the environment of the earthworm Eisenia foetida. Soil Biol. Biochem. 12, 347–352.

    Article  Google Scholar 

  30. Kelsey, J. W., Kottler, B. D., and Alexander, M. (1997). Selective chemical extractants to predict biovailability of soil-aged organic chemicals. Environ.Sci.Technol. 31, 214–217.

    Article  CAS  Google Scholar 

  31. Kelsey, J.W., and Alexander, M. (1997). Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ. Toxicol. Chem. 16, 582–585.

    Article  CAS  Google Scholar 

  32. Knight, B.P., Chaudri, A.M., McGrath, S.P. and Giller, K.E. (1998). Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environmental Pollution 99, 293–298.

    Article  CAS  Google Scholar 

  33. Korcak, R.F., and Fanning, D.S. (1985). Extractability of cadmium, copper, nickel and zinc by double acids vs. DTPA and plant content at excessive soil levels. J. Env. Qual. 7, 506–512.

    Article  Google Scholar 

  34. Kovalenko, L.J., Maechling, C.R., Clemett, S.J., Philippoz, J.-M., Zare, R.N., and Alexander, C.M.O. (1992). Microscopic organic-analysis using 2-step laser mass-spectrometry–Application to meteoritic acid residues, Anal. Chem. 64, 682–690.

    Article  CAS  Google Scholar 

  35. Lioy, P.J. (1990). Assessing total human exposure to contaminants. Environ. Sci. Tech. 24, 935–945.

    Article  Google Scholar 

  36. Lofs-Holmin A. and Bostrom U. (1988). The use of earthworms and other soil animals in pesticide testing. In C.A. Edwards and E.F. Neuhauser (eds.), Earthworms in waste and environmental management. pp. 303–313. Academic Publishing. The Hague, The Netherlands.

    Google Scholar 

  37. Luthy, R.G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., Weber, W.J., Jr., and Westall, J.C. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31 (12), 3341–3347.

    Article  CAS  Google Scholar 

  38. MacDonald, J.A. (1997). Hard times for innovative cleanup technology. Environ. Sci. Technol. 31 (12), 560A - 536A.

    Article  CAS  Google Scholar 

  39. May, M. (1997) Can time heal toxic wounds? American Scientist., 318–319.

    Google Scholar 

  40. Neuhauser E.F. and Callahan C.A. (1990). Growth and reproduction of the earthworm Eisenia fetida exposed to sublethal concentrations of organic chemicals. Soil Biol. Biochem. 22, 175–179.

    Article  CAS  Google Scholar 

  41. Pappas, D.L., Hubonchak, D.M., Ervin, M.H., and Winograd, N. (1989). Atom counting at surfaces, Science 243, 64–66.

    Article  CAS  Google Scholar 

  42. Pignatello, J. J., and Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Tech. 30, 1–11.

    Article  CAS  Google Scholar 

  43. Osswald P., Baveye P., and Block J.-C. (1996). Bacterial influence on partitioning rate during the biodegradation of styrene in a biphasic aqueous-organic system. Biodeg. 7, 297–302.

    Article  CAS  Google Scholar 

  44. Reinecke A.J. and Venter J.M. (1987). Moisture preferences, growth, and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biol. Fertil. Soil. 3, 135–141.

    Article  Google Scholar 

  45. Renner, R. (1997). New research reveals how contaminants can be “locked” into soil. Envir. Sci. Technol. 31, 270A - 271A.

    Article  CAS  Google Scholar 

  46. Ritter, H.D., (1997). Environmentally acceptable endpoints. The scientific approach to clean-up levels. in G.S. Sayler, J. Sanseverino, and K.L. Davis (eds.), Biotechnology in the sustainable environment, pp. 209–214, Plenum Press, NewYork.

    Chapter  Google Scholar 

  47. Ruggiero, P. (1999). Abiotic transformation of organic xenobiotics in soils: A compounding factor in the assessment of bioavailability. (This volume)

    Google Scholar 

  48. Scow, K. M. (1993). Effect of sorption-desorption and diffusion processes on the kinetics of biodegradation of organic chemicals in soil. in D. M. Linn, T. H. Carski, M. L. Brusseau and F.-H. Chang (eds.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil, SSSA Special Publication No.32, Madison, Wisconsin, pp. 73–114.

    Google Scholar 

  49. Scow, K. M., and Johnson, C.R. (1997). Effect of sorption on biodegradation of soil pollutants. Adv. Agron. 58, 1–56.

    Article  CAS  Google Scholar 

  50. Stevens, J.B., and Swackhamer, D.L. (1990). Environmental pollution. A multimedia approach to modeling human exposure. Environ. Sci. Tech. 23 (10), 1180–1186.

    Article  Google Scholar 

  51. Stotzky, G. (1997). Quantifying the metabolic activity of mcrobes in soil. in C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach and M. V. Walter (eds.). Manual of environmental microbiology, ASM Press, Washington, D.C., pp. 453–458.

    Google Scholar 

  52. Strawn, D.G., Scheidegger, A.M., and Sparks, D.L. (1998). Kinetics and mechanisms of Pb(II) sorption and desorption at the aluminum oxide-water interface. Environ. Sci. Technol. 32, 2596–2601.

    Article  CAS  Google Scholar 

  53. Vaal, M.A., and Hoekstra, J.A. (1994). Modelling the sensitivity of aquatic organisms to toxicants, using simple biological and physico-chemical factors. Report National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

    Google Scholar 

  54. van der Meer, J.R., Werlen, C., Nishino, S.F., and Spain, J.C. (1998). Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl. and Environ. Microbio. 64, 4185–4193.

    Google Scholar 

  55. Van Gestel, C. A. M., and Ma, W. (1988). Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotoxicology and Environ. Safety 15, 289–297.

    Google Scholar 

  56. Venter J.M. and Reinecke A.J. (1988). The life-cycle of the compost worm Eisenia fetida (Olgochaeta). S. Afri.J. Zool. 23, 161–165.

    Google Scholar 

  57. Weber, J. B., Best, J. A., and Gonese, J. U. (1993). Biovailability and bioactivity of sorbed organic chemicals. in D. M. Linn, T. H. Carski, M. L. Brusseau and F.-H. Chang (eds.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil,SSSA Special Publication No.32, Madison, Wisconsin, pp. 153–196.

    Google Scholar 

  58. Weber, W. J., McGinley, P. M., and Katz, L. E. (1991). Sorption phenomena in subsurface systems: concepts, models and effects on contaminant fate and transport. Wat. Res. 25, 499–528.

    Article  CAS  Google Scholar 

  59. White, J.C., Kelsey, J.W., Hatzinger, P.B., and Alexander, M. (1997). Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ. Toxicol. Chem. 16(10), 2040–2045.

    Google Scholar 

  60. Yaron B., Calvet R., Prost. R. (1996). Soil Pollution: processes and dynamics. Springer, New York.

    Book  Google Scholar 

  61. Zehnder, A.J.B. (1999). Bioremediation of environments contaminated with organic xenobiotics: Putting microbial metabolism to work. (This volume)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baveye, P., Bladon, R. (1999). Bioavailability of Organic Xenobiotics in the Environment. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics