Skip to main content

Evaluation of Soil Adsorption-Desorption Capacity for the Assessment of Pesticide Bioavailability

  • Chapter

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

Adsorption is probably the most important form of interaction between pesticides and the soil, since it governs the amount of active substance available. Understanding of the extent and the mechanisms of adsorption of pesticides is an indispensable premise to any type of evaluation of the efficacy of their active principles and their possible impact on the environment. Laboratory studies of the adsorption and desorption of pesticides enable forecasts to be made of their behaviour in the field when the features of the soils on which they are to be applied are known. Tests can be carried out on whole soils or purified fractions: in the first case, the contribution of each adsorbent phase can only be evaluated by determining the correlations between the extent of adsorption and the chemical and physical properties of the soil. Pesticides can be adsorbed on a soil through variously strong physicochemical bonds. The type and degree of adsorption and also the extent to which it is reversible will depend on the properties of both the soil and the pesticide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alva, A.K. and Megh Singh (1991) Sorption-desorption of herbicides in soil as influenced by electrolite cations and ionic strength, J. Environ. Sci. Health, B 26 (2), 147–163.

    Article  Google Scholar 

  2. Bedbur, E. (1996) Anomalies in the Freundlich equation, Proc. COST 66 Workshop, Pesticides in soil and the environment, pp. 29–30, Stratford-upon-Avon, 13.15 may 1996.

    Google Scholar 

  3. Boesten, J.J.T.I. and van der Pas (1988) Modeling adsorption/desorption kinetics of pesticides in a soil suspension, Soil Sci. 146, 221–231.

    Article  CAS  Google Scholar 

  4. Boesten J.J.T.I. (1990) Influence of solid/liquid ratio on the experimental error of sorption coefficients in pesticide/soil systems, Pestic. Sci. 30, 31–41.

    Article  CAS  Google Scholar 

  5. Boesten, J.J.T.I. (1991) Sensitivity analysis of a mathematical model for pesticide leaching to groundwater, Pestic. Sci. 31, 375–388.

    Article  CAS  Google Scholar 

  6. Bowman, B.T. (1882) Conversion of Freundlich adsorption K values to mole fraction format and the use of Sy values to express relative adsorption of pesticides, Soil Sci. Soc. Am. J. 46, 740–743.

    Article  Google Scholar 

  7. Bowman, B.T. and Sans, W.W. (1985) Partitioning behavior of insecticides in soil-water systems: 1. Adsorbent concentration effects, J. Environ. Qual. 14, 265–269.

    Article  CAS  Google Scholar 

  8. Bowman B.T. and Sans W.W. (1985) Partitioning behavior of insecticides in soil-water systems: II. Desorption hysteresis effects, J. Environ. Qual. 14, 270–273.

    Article  CAS  Google Scholar 

  9. Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, ocatanol-water partition coefficients, water solubilities, bioconcentration factors and parachor, J. Agric. Food Chem. 29, 1050–1059.

    Article  CAS  Google Scholar 

  10. Businelli, M. Vischetti, C. and Coletti, A. (1992) Validation of the Ka approach for modelling the fate of some herbicides in italian soils, Fresenius Envir. Bull. 1, 583–588.

    CAS  Google Scholar 

  11. Businelli, M. (1993) Significance and limitations of partition coefficients, Proceedings of IX Simposium Pesticide Chemistry, Mobility and degradation ofxenobiotics, Piacenza, 11–13 october 1993, Del Re A.A.M., Capri, E., Evans, S.P., Natali, P., Trevisan, M. Edit., Biagini Publish. Lucca, Italy.

    Google Scholar 

  12. Capri, E., Trevisan, M., Gennari, M., Nègre, M. and Walker, A. (1993) Alachlor degradation and sorption in soil: comparison of two different experimental techniques, Toxicological and Environmental Chemistry 43, 41–49.

    Article  Google Scholar 

  13. Celi, L., Nègre, M. and Gennari, M. (1996) Adsorption of the herbicide acifluorfen on soil humic acids, J. Agric. Food Chem. 44, 3388–3392.

    Article  CAS  Google Scholar 

  14. Chiou, C.T., Shoup, T.D. and Portier, P.E. (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions, Org. Geochem. 8, 9–14.

    Article  CAS  Google Scholar 

  15. Fanner, W.J. and Aochi, Y. (1974) Picloram sorption by soils, Soil Sci. Soc. Amer. Proc. 38, 418–423.

    Article  Google Scholar 

  16. Gennari, M. Nègre, M. and Raimondo, E. (1994) Effect of soil properties on adsorption and desorption of acifluorfen, J. Agric. Food Chem. 42, 2329–2332.

    Article  CAS  Google Scholar 

  17. Giles, C.H., MacEwan, T.H., Nakhwa and Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 4, 3973–3993.

    Google Scholar 

  18. Grover, R. and Hance, R.J. (1970) Effect of ratio of soil to water on adsorption of linuron and atrazine, Soil Sci. 109, 136–138.

    Article  CAS  Google Scholar 

  19. Hasset J.J. and Banward W.L. (1989) The sorption of nonpolar organics by soils and sediments. In Reactions and movement of organic chemical in soils, pp. 31–44, Sawhney, B.L. and Brown, K, Ed. Soil Science Society of America, Inc., American Society of Agronomy, Inc. Publish. Madison, Wisconsin.

    Google Scholar 

  20. Jamet, P. and Hoyoux-Roche D. (1989) Influence du rapport sol/eau lors de l’étude quantitative de l’adsorption et de la désorption des pesticides, In Methodological aspects of the study of pesticide behaviour in soil, pp. 3–12, INRA Versailles, June 16–17, 1988, Jamet, P. Ed. INRA Publish., Paris.

    Google Scholar 

  21. Karickhoff, S.W., Brown, D.S. and Scott, T.A. (1979) Sorption of hydrophobic pollutants on natural sediments, Water Res. 13, 241–248.

    Article  CAS  Google Scholar 

  22. Khan, S.U. and Ivarson, K.C. (1981) Microbiological release of unextracted bound residues from an organic soil treated with prometryn. J. Agr. Food Chem. 29, 1301–1303.

    Article  CAS  Google Scholar 

  23. Khan, S.U. (1982) Bound pesticide residues in soil and plants, Residues Reviews 84, 1–25.

    Article  CAS  Google Scholar 

  24. Koskinen, W.C., O’Connor, G.A. and Cheng, H.H. (1979) Characterization of hysteresis in the desorption of 2,4,5-T from soils, Soil Sci. Soc. Am. J. 43, 871–874.

    Article  CAS  Google Scholar 

  25. Koskinen, W.C. and Cheng, H.H. (1983) Effects of experimental variables on 2,4,5-T adsorption-desorption in soil, J. Environ. Qual. 12, 325–330.

    Article  Google Scholar 

  26. Koskinen, W.C. and Harper, S.S. (1990) The retention process: mechanisms, In Pesticides in the soil environment: processes, impacts, and modeling, pp. 51–77, Cheng, H.H. Ed. Soil Science Society of America, Inc. Publish. Madison, Wisconsin.

    Google Scholar 

  27. Lambert, S.M. (1967) Functional relationship between sorption in soil and chemical structure, J. Agric. Food Chem. 15, 572–576.

    Article  CAS  Google Scholar 

  28. Malik, N. and Drennan, S.H. (1989) Adsorption-desorption equilibria of 14C-fluridone at low solution concentrations and soil:water ratios, Can. J. Soil Sci. 69, 567–577.

    Article  CAS  Google Scholar 

  29. Murray, M.R.and Hall, J.K. (1989) Sorption-desorption of dicamba and 3,6-dichlorosalicylic acid in soils, J. Environ. Qual 18, 51–57.

    Google Scholar 

  30. Nearpass, D.C. (1967) Effect of the predominating cation on the adsorption of simazine and atrazine by Bayboro clay soil. Soil Sci. 103, 177–182.

    Article  CAS  Google Scholar 

  31. Pignatello, J.J. and Xing, B. (1996) Mechanisms of slow sorption of organic chemicals to natural particles, Environ. Sci. Technol. 30, 1–11.

    Article  CAS  Google Scholar 

  32. Pusino, A., Micera, G. and Gessa, C. (1991) Interaction of the herbicide acifluorfen with montmorillonite: formation of insoluble Fei+ A13+ Cue+ and Cat+ complexes, Clays and Clay Minerals 39, 50–53.

    Article  CAS  Google Scholar 

  33. Pusino, A., Liu, W. and Gessa C. (1992) Influence of organic matter and its clay complexes on metolachlor adsorption on soil, Pestic. Sci. 36, 283–286.

    Article  CAS  Google Scholar 

  34. Pusino, A., Liu, W., Fang, Z. and Gessa, C. (1993) Effect of metal-binding ability on the adsorption of acifluorfen on soil, J. Agric. Food Chem. 41, 502–505.

    Article  CAS  Google Scholar 

  35. Pusino, A., Liu, W. and Gessa, C. (1994) Adsorption of triclopyr on soil and some of its components, J. Agric. Food Chem. 42, 1026–1029.

    Article  CAS  Google Scholar 

  36. Pusino, A., Petretto, S. and Gessa, C. (1997) Adsorption and desorption of imazapyr by soil, J. Agric. Food Chem. 45, 1012–1016.

    Article  CAS  Google Scholar 

  37. Swoboda, A.R. and Thomas, G.T. (1968) Movement of parathion in soil columns, J. Agric Food Chem. 16, 923–927.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gennari, M., Gessa, C. (1999). Evaluation of Soil Adsorption-Desorption Capacity for the Assessment of Pesticide Bioavailability. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics