Skip to main content

Global Properties of Cellular Automata

  • Chapter
Cellular Automata and Complex Systems

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 3))

Abstract

Cellular automata are often used to model the “real” world in a physical or a biological context. Then, global properties such as surjectivity or reversibility correspond to physical properties of the modeled world namely the reachability of all states or the macroscopic reversibility of the phenomenon.

Boundary conditions are often used — although not always. The problem is that they affect the global behavior of cellular automata. Furthermore, these influences depend on the dimension of the space that is used.

In this paper, we present a review of global properties of cellular automata. We focus on injectivity, surjectivity and reversibility and thus present the state of the art (at least as far as we know) on the relationships between these properties when the cellular automata are used on infinite, finite, or periodic configurations. We explain the difference between the 1D case and higher dimensions. We then discuss the representation problem of transition tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoroso, S. & Y.N. Patt, Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tesselation Structures, J. Comp. Syst. Sci. 6, 448–464 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, R., The Undecidability of the Domino Problem, Memoirs of the American Mathematical Society 66 (1966).

    Google Scholar 

  3. Börger, E., E. Grädel & Y. Gurevich, The Classical Decision Problem, chapter “Tiling problems” by C. Allauzen and B. Durand, Springer-Verlag (1996).

    Google Scholar 

  4. Dubacq, J-C., Etude des Automates Cellulaires Inversibles, Technical report, Rapport de lère année, Ecole Normale Supérieure de Lyon (1993).

    Google Scholar 

  5. Durand, B., Automates Cellulaires: Réversibilité et Complexité, PhD thesis, Ecole Normale Supérieure de Lyon (1994).

    Google Scholar 

  6. Durand, B., Inversion of 2d Cellular Automata: Some Complexity Results, Theoretical Computer Science 134, 387–401 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. Durand, B., The Surjectivity Problem for 2D Cellular Automata, Journal of Computer and Systems Science 49 (3), 718–725 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. Durand, B., A Random NP-Complete Problem for Inversion of 2D Cellular Automata, Theoretical Computer Science 148 (1), 19–32 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gurevich, Y. & I. Koriakov, A Remark on Berger’s Paper on the Domino Problem, Siberian Journal of Mathematics 13, 459–463 (1972), (in Russian).

    Google Scholar 

  10. Head, T., One-Dimensional Cellular Automata: Injectivity from Unambiguity, Complex Systems 3, 343–348 (1989).

    MathSciNet  MATH  Google Scholar 

  11. Kari, J., Reversibility and Surjectivity Problems of Cellular Automata, Journal of Computer and System Sciences 48, 149–182 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. Maruoka, A. & M. Kimura, Conditions for Injectivity of Global Maps for Tessallation Automata, Information and Control 32, 158–162 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  13. Moore, E.F., Machine Models of Self—Reproduction, Proc. Symp. Apl. Math. 14, 13–33 (1962).

    Google Scholar 

  14. Myhill, J., The Converse to Moore’s Garden-of-Eden Theorem, Proc. Am. Math. Soc. 14, 685–686 (1963).

    MathSciNet  MATH  Google Scholar 

  15. Richardson, D., Tesselations with Local Transformations, Journal of Computer and System Sciences 6, 373–388 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  16. Robinson, R.M., Undecidability and Nonperiodicity for Tilings of the Plane, Inventiones Mathematicae 12, 177–209 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Sutner, K., De Bruijn Graphs and Linear Cellular Automata, Complex Systems 5, 19–30 (1991).

    MathSciNet  MATH  Google Scholar 

  18. Toffoli, T. & N. Margolus, Invertible Cellular Automata: A Review, Physica D 45, 229–253 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Durand, B. (1999). Global Properties of Cellular Automata. In: Goles, E., Martínez, S. (eds) Cellular Automata and Complex Systems. Nonlinear Phenomena and Complex Systems, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9223-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9223-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5154-7

  • Online ISBN: 978-94-015-9223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics