Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 524))

Abstract

Until recently, SL has often been studied in the case of inertial (transient) cavitation [1.2] although a correlation ‘SL/bubble dynamics’ has been difficult and relatively inaccurate. These drawbacks -associated with multi-bubble fields- are due to the fact that, under these conditions, bubbles of different sizes are loosely coupled and their growth and collapse are somewhat random. Most interesting are the recent findings on single bubbles maintained in levitation in a resonant acoustic set-up [3] -an acoustic energy concentration factor equal to ~11 orders of magnitude [4], the shortness of the SL flash [4,5] (<50ps), the clock-like emission [4], the appearence of the flash within 500 ps near maximum collapse, the sensitivity to noble gases [6] and the non-sphericity of the bubble at the time of emission [7]. This considerable progress in the knowledge of SL is due to the fact that single bubbles constitute very controllable systems [8]. Up to now, the sonochemical activity of cavitating media [9,10,11] has only been described in the case of multi-bubble clouds (stable [12] and inertial cavitation; aqueous and organic [13,14] solutions). We report here that single bubbles in levitation are also chemically active. A dosimetry is reported in the case of Weissler’s system. The interest to use chemical species as tracers for the investigations of liquid flow around single bubbles will be reported with more details elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walton, A.J. and Reynolds, G.T. (1984) Sonoluminescence, Adv. Phys. 33, 595–660.

    Article  ADS  Google Scholar 

  2. Verrall, R.E. and Sehgal, C. (1988) Sonoluminescence, in K.S. Suslick (ed.), Sonochemistry: Its Chemical, Physical and Biological Effects, VCH publishers, New York, pp. 227–286.

    Google Scholar 

  3. Gaitan, D.F., Crum, L.A., Church, C.C. and Roy, R.A. (1992) Sonoluminescence and bubble dynamics for a single stable, cavitation bubble, J. Acoust. Soc. Am. 91, 3166–3183.

    Article  ADS  Google Scholar 

  4. Barber, B. P. and Putterman, S.J. (1991) Observation of synchronous picosecond sonoluminescence, Nature 352, 318–320.

    Article  ADS  Google Scholar 

  5. Barber, B.P., Hiller, R., Arasika, K., Fetterman, H. and Futterman, S.J. (1992) Resolving the picosecond characteristics of synchronous sonoluminescence, J. Acoust. Soc. Am. 91, 3061–3063.

    Article  ADS  Google Scholar 

  6. Hiller, R., Weninger, K., Putterman, S.J. and Barber, B. P. (1994) Effect of noble gas doping in single-bubble sonoluminescence, Science 266, 248–250.

    Article  ADS  Google Scholar 

  7. Weninger, K., Futterman, S.J. and Barber, B. P. (1996) Angular correlations in sonoluminescence: Diagnostic for the sphericity of a collapsing bubble, Phys. Rev. E 54, 2205–2208.

    Article  ADS  Google Scholar 

  8. Barber, B.P., Hiller, R.A., Löfstedt, R., Putterman, S.J., Weninger, K.R. (1997) Defining the unknowns of sonoluminescence, Phys. Rep. 281, 65–143.

    Article  ADS  Google Scholar 

  9. Suslick, K. S. (1988) Homogeneous sonochemistry, in K.S. Suslick (ed.), Ultrasound: Its Chemical, Physical and Biological Effects, VCH, New York, pp. 123–163.

    Google Scholar 

  10. Henglein, A. (1993) Contributions to Various Aspects of Cavitation Chemistry, in T.J. Mason (ed.), Advances in Sonochemistry, JAI Press, London, Vol. 3, pp 17–83.

    Google Scholar 

  11. Leighton, T. G. (1994) The Acoustic Bubble, Academic Press, London, pp. 464–495.

    Google Scholar 

  12. Henglein, A. (1954) Chemische Wirkungen von kontinuierlichen und implusmodulierten hörbaren Schallwellen, Z. Naturforsch. 10B, 20–26.

    Google Scholar 

  13. Schulz, R and Henglein, A. (1953) Über den Nachweis von freien Radikalen, die unter dem Einflufl von Ultraschallwellen gebildet werden, mit Hilfe von Radikal-Kettenpolymerisation und Diphenyl-pikryl-hydrazyl, Z. Naturforsch. B8, 160–161.

    Google Scholar 

  14. Suslick, K.S., Gawienowski, J.J., Schubert, P.F. and Wang, H.H. (1983) Alkane sonochemistry, J. Phys. Chem. 87, 2299–2301.

    Article  Google Scholar 

  15. Weissler, A., Cooper, H. W. and Snyder, S.J. (1950) Chemical effect of ultrasonic waves: Oxidation of potassium iodide solution by carbon tetrachloride, J. Am. Chem. Soc. 72, 1769–1775.

    Article  Google Scholar 

  16. Flynn, H.G. (1964) Physics of acoustic cavitation in liquids, in W.P. Mason (ed.), Physical Acoustics, Academic Press, New york, Vol. 1, Part B, pp. 57–172.

    Google Scholar 

  17. Kolb, J. and Nyborg, W. (1956) Small-scale acoustic streaming in liquids, J. Acoust. Soc. Am. 28, 1237–1242.

    Article  ADS  Google Scholar 

  18. Longuet-Higgins, M.S. and Oguz, A. (1995) Critical microjet in collapsing cavities. J. Fluid Mech, 290, 183–201.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Longuet-Higgins, M.S. (1996) Shedding of vortex ring by collapsing cavities, with application to single-bubble sonoluminescence, J. Acoust. Soc. Am., 100, 2678 (This reference is the abstract of a lecture presented at the 132th. meeting of the Acoustical Society of America, Honolulu, Hawaii, 2–6 December 1996; manuscript submitted).

    Google Scholar 

  20. Prosperetti, A. (1997) A new mechanism for sonoluminescence, J. Acoust. Soc. Am., 101, 2003–2007.

    Article  ADS  Google Scholar 

  21. Lepoint, T., De Pauw, D., Lepoint-Mullie, F., Goldman, M. and Goldman, A. (1997) Sonoluminescence: an alternative “electrohydrodynamic” hypothesis, J. Acoust. Soc. Am., 101, 2013–2030.

    Article  ADS  Google Scholar 

  22. Elder, S.A. (1959) Cavitation microstreaming, J. Acoust. Soc. Am. 31, 54–64.

    Article  ADS  Google Scholar 

  23. Benjamin, T.B. & Ellis, A.T. (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries, Phil. Trans. R. Soc. Lond. A260, 221–240.

    Article  ADS  Google Scholar 

  24. Lauterborn, W. (1974) General and Basic Aspects of Cavitation, in L. Bjorno (ed.), Finite-Amplitude Wave Effects in Fluids, IPC Sci. Technol. Press, Guilford, pp. 195–202.

    Google Scholar 

  25. T. Verraes, F. Lepoint-Mullie, T. Lepoint, iExperimental study of the liquid flow near a single sonoluminescent bubble, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lepoint, T., Lepoint-Mullie, F., Henglein, A. (1999). Single Bubble Sonochemistry. In: Crum, L.A., Mason, T.J., Reisse, J.L., Suslick, K.S. (eds) Sonochemistry and Sonoluminescence. NATO ASI Series, vol 524. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9215-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9215-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5162-2

  • Online ISBN: 978-94-015-9215-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics