Skip to main content

The Hydrodynamical / Chemical Approach to Sonoluminescence

A detailed comparison to experiment

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 524))

Abstract

Detailed comparison between experimental data and the recent hydrodynamical/chemical approach towards single bubble sonoluminescence (SBSL) is offered. Many of the unknowns can be resolved following this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaitan, D. F. (1990) An experimental investigation of acoustic cavitation in gaseous liquids, PhD thesis, The University of Mississippi; Gaitan, D. F., Crum, L. A., Roy, R. A., and Church, C. C. (1992), J. Acoust. Soc. Am 91, 3166.

    Article  ADS  Google Scholar 

  2. Barber et al. (1997), Phys. Rep. 281, 65.

    Google Scholar 

  3. Rayleigh, Lord (1917), Philos. Mag. 34, 94;

    Article  MATH  Google Scholar 

  4. Plesset, M. (1949), J. Appl. Mech. 16, 277;

    Google Scholar 

  5. Keller, J. B. and Miksis, M. J. (1980), J. Acoust. Soc. Am. 68, 628.

    Article  ADS  MATH  Google Scholar 

  6. Plesset, M. and Prosperetti, A. (1977), Ann. Rev. Fluid Mech. 9, 145.

    Article  ADS  Google Scholar 

  7. Prosperetti, A. (1977), Quart. Appl. Math. 34, 339.

    MATH  Google Scholar 

  8. Löfstedt, R., Barber, B. P., and Putterman, S. J. (1993), Phys. Fluids A 5, 2911.

    Article  ADS  MATH  Google Scholar 

  9. Fyrillas, M. M. and Szeri, A. J. (1994), J. Fluid Mech. 277, 381.

    Article  ADS  MATH  Google Scholar 

  10. Löfstedt, R., Weninger, K., Putterman, S. J., and Barber, B. P. (1995), Phys. Rev. E 51, 4400.

    Article  ADS  Google Scholar 

  11. Brenner, M., Lohse, D., and Dupont, T. (1995), Phys. Rev. Lett. 75, 954.

    Article  ADS  Google Scholar 

  12. Brenner, M., Lohse, D., Oxtoby, D., and Dupont, T. (1996), Phys. Rev. Lett. 76, 1158.

    Article  ADS  Google Scholar 

  13. Hilgenfeldt, S., Lohse, D., and Brenner, M. P. (1996), Phys. Fluids 8, 2808.

    Article  ADS  MATH  Google Scholar 

  14. Hilgenfeldt, S., Brenner, M. P., Grossmann, S., and Lohse, D. (1997) Analysis of Rayleigh—Plesset dynamics for sonoluminescing bubbles, submitted to J. Fluid Mech.

    Google Scholar 

  15. Brennen, C. E. (1995) Cavitation and Bubble Dynamics, Oxford University Press, Oxford.

    Google Scholar 

  16. Brenner, M. P., Hilgenfeldt, S., and Lohse, D. (1996) Why air bubbles in water glow so easily, in J. Parisi, S. C. Müller, and W. Zimmermann (eds.), Nonlinear Physics of Complex Systems — Current Status and Future Trends, Springer Lecture Notes in Physics, Berlin, p. 79.

    Chapter  Google Scholar 

  17. Lohse, D., Brenner, M. P., Dupont, T., Hilgenfeldt, S., and Johnston, B. (1997), Phys. Rev. Lett. 78, 1359.

    Article  ADS  Google Scholar 

  18. Lohse, D. and Hilgenfeldt, S. (1997), J. Chem. Phys. 107, 6986.

    Article  ADS  Google Scholar 

  19. Holt, G. and Gaitan, F. (1996), Phys. Rev. Lett. 77, 3791.

    Article  ADS  Google Scholar 

  20. Matula, T. J. and Crum, L. A. (1997), “Evidence for gas exchange in single bubble sonoluminescence”, submitted to Phys. Rev. Lett.

    Google Scholar 

  21. Holzfuss, J., Rüggeberg, M., and Billo, A. (1997), Fortschritte der Akustik DAGA.

    Google Scholar 

  22. Lepoint-Mullie, F., Lepoint, T., and Henglein, A. (1997).

    Google Scholar 

  23. Barber, B. P. et al. (1994), Phys. Rev. Lett. 72, 1380.

    Article  ADS  Google Scholar 

  24. Gompf, B. et al. (1997), Phys. Rev. Lett. 79, 1405.

    Article  ADS  Google Scholar 

  25. Barber, B. P. and Putterman, S. J. (1991), Nature (London) 352, 318.

    Article  ADS  Google Scholar 

  26. Moran, M. J. et al. (1995), Nucl. Instr. and Meth. in Phys. Res. B 96, 651.

    Article  ADS  Google Scholar 

  27. Jarman, P. (1960), J. Acoust. Soc. Am. 32, 1459;

    Article  ADS  Google Scholar 

  28. Greenspan, H. P. and Nadim, A. (1993), Phys. Fluids A 5, 1065;

    Article  ADS  MATH  Google Scholar 

  29. Wu, C. C. and Roberts, P. H. (1993), Phys. Rev. Lett. 70, 3424;

    Article  ADS  Google Scholar 

  30. Moss, W., Clarke, D., White, J., and Young, D. (1994), Phys. Fluids 6, 2979;

    Article  ADS  Google Scholar 

  31. Kondic, L., Gersten, J. I., and Yuan, C. (1995), Phys. Rev. E 52, 4976.

    Article  ADS  Google Scholar 

  32. Moss, W., Clarke, D., and Young, D. (1997), Science 276, 1398.

    Article  Google Scholar 

  33. Brenner, M. P., Hilgenfeldt, S., Lohse, D., and Rosales, R. (1996), Phys. Rev. Lett. 77, 3467.

    Article  ADS  Google Scholar 

  34. Plesset, M. (1954), J. Appl. Phys. 25, 96.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Epstein, P. and Plesset, M. (1950), J. Chem. Phys. 18, 1505.

    Article  ADS  Google Scholar 

  36. Eller, A. and Flynn, H. G. (1964), J. Acoust. Soc. Am. 37, 493.

    Article  MathSciNet  ADS  Google Scholar 

  37. Barber, B. P., Weninger, K., Löfstedt, R., and Putterman, S. J. (1995), Phys. Rev. Lett. 74, 5276.

    Article  ADS  Google Scholar 

  38. Kondic, L., Yuan, C., and Chan, C. K. (1997).

    Google Scholar 

  39. Prosperetti, A. (1997), J. Acoust. Soc. Am. 101, 2003.

    Article  ADS  Google Scholar 

  40. Akhatov, I. et al. (1997), Phys. Rev. E 55, 3747;

    Article  ADS  Google Scholar 

  41. Matula, T., Cordry, S. M., Roy, R. A., and Crum, L. A. (1997), J. Acoust. Soc. Am. 102, 1522.

    Article  ADS  Google Scholar 

  42. Hilgenfeldt, S., Lohse, D., and Moss, W. (1997), “Temperature dependence of single bubble sonoluminescence”, submitted to Phys. Rev. Lett.

    Google Scholar 

  43. Vuong, V. Q., Fyrillas, M. M., and Szeri, A. J. (1997), “The influence of liquid temperature on the sonoluminescence hot spot”, submitted to J. Acoust. Soc. Am.

    Google Scholar 

  44. Moss, W. Clarke, D., White, J., and Young, D. (1995), Phys. Lett. A 211, 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brenner, M.P., Hilgenfeldt, S., Lohse, D. (1999). The Hydrodynamical / Chemical Approach to Sonoluminescence. In: Crum, L.A., Mason, T.J., Reisse, J.L., Suslick, K.S. (eds) Sonochemistry and Sonoluminescence. NATO ASI Series, vol 524. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9215-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9215-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5162-2

  • Online ISBN: 978-94-015-9215-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics