Skip to main content

Steady shear elastic properties

  • Chapter
Rheology of Filled Polymer Systems
  • 663 Accesses

Abstract

Despite the fact that the literature on the rheology of filled systems is extensive [1–85], the work related to the steady shear elastic properties of such systems is quite limited [5,19,27,29,31,34]. This is, of course, due to the experimental difficulties in these measurements. The usual signs of elastic behavior in filled systems are recognized by the presence of larger normal stress differences during relatively low shear measurements on a cone and plate rheogoniometer and by higher exit pressure as well as larger die swell values during high shear capillary or slit rheometry. As normal stress difference is mathematically connected with exit pressure and recoverable shear strain and, conceptually, with die swell ratio, knowledge of these would also provide the same information. The exit pressure is the small finite value p exit which is obtained when the pressure in the capillary or slit is plotted against downstream distance and the extrapolated pressure at the exit is non-zero. With appropriate assumptions, it has been shown that p exit can be related to primary normal-stress difference [77] . However, since the theory has been questioned [86] and a controversy arisen [87], it has not gained popularity as a useful measure of elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruch, M., Holderle, M. and Friedrich, C. (1997) Rheological properties of polystyrene filled with hairy PMMA-particles, Paper 8-F presented at the 13th international meeting of the Polymer Processing Society (June 10–13).

    Google Scholar 

  2. Chapman, F.M. and Lee, T.S. (1970) Effect of talc filler on the melt rheology of polypropylene, SPE Journal, 26, 37–40.

    CAS  Google Scholar 

  3. Mills, N.J. (1971) The rheology of filled polymers, J. Appl. Polym. Sci., 15, 2791–805.

    Article  CAS  Google Scholar 

  4. Nazem, F. and Hill, C.T. (1974) Elongational and shear viscosities of beadfilled thermoplastic, Trans. Soc. Rheol., 18, 87–101.

    Article  CAS  Google Scholar 

  5. Han, C.D. (1974) Rheological properties of calcium carbonate-filled polypropylene melts., J. Appl. Polym. Sci.,18, 821–9.

    Article  CAS  Google Scholar 

  6. White, J.L. and Crowder, J.W. (1974) The influence of carbon black on the extrusion characteristics and rheological properties of elastomers: polybutadiene and butadiene-styrene copolymer, J. Appl. Polym. Sci. ,18,1013–38.

    Article  CAS  Google Scholar 

  7. Minagawa, N. and White, J.L. (1976) The influence of titanium dioxide on the rheological extrusion properties of polymer melts, J. Appl. Polym. Sci., 20, 501–23.

    Article  CAS  Google Scholar 

  8. Faulkner, D.L. and Schmidt, L.R. (1977) Glass bead-filled polypropylene Part I: Rheological and mechanical properties, Polym. Engg Sci., 17, 657–64.

    Article  CAS  Google Scholar 

  9. Boira, M.S. and Chaffey, C.E. (1977) Effects of coupling agents on the mechanical and rheological properties of mica-reinforced polypropylene, Polym. Engg Sci., 17, 715–18.

    Article  Google Scholar 

  10. Bigg, D.M. (1977) Rheology and wire coating of high atomic number metal low density polyethylene composites, Polym. Engg Sci., 17, 745–50.

    Article  Google Scholar 

  11. Kataoka, T., Kitano, T., Sasahara, M. and Nishijima, K. (1978) Viscosity of particle filled polymer melts, Rheol. Acta, 17, 149–55.

    Article  CAS  Google Scholar 

  12. Kataoka, T., Kitano, T. and Nishimura, T. (1978) Utility of parallel-plate plastometer for rheological study of filled polymer melts, Rheol. Acta, 17, 626–31.

    Article  CAS  Google Scholar 

  13. Copeland, J.R. and Rush, O.W. (1978) Wollastonite: short fiber filler/ reinforcement, Plastic Compounding, 1, 26–36 (Nov/Dec).

    CAS  Google Scholar 

  14. Chan, Y., White, J.L. and Oyanagi, Y. (1978) Influence of glass fibers on the extrusion and injection molding characteristics of polyethylene and polystyrene melts, Polym. Engg Sci., 18, 268–72;

    Article  CAS  Google Scholar 

  15. Chan, Y., White, J.L. and Oyanagi, Y. (1978) A fundamental study of the rheological properties of glass fiber-reinforced polyethylene and polystyrene melts, J. Rheol., 22, 507–24.

    Article  CAS  Google Scholar 

  16. Han, C.D., Sandford, C. and Yoo, H.J. (1978) Effects of titanate coupling agents on the rheological and mechanical properties of filled polyolefins, Polym. Engg Sci., 18, 849–54.

    Article  CAS  Google Scholar 

  17. Menges, G., Geisbusch, P. and Zingel, U. (1979) Kunststoffe, 7, 485.

    Google Scholar 

  18. Arina, M., Honkanen, A. and Tammela, V. (1979) Mineral fillers in low density polyethylene films, Polym. Engg Sci., 19, 30–9.

    Article  CAS  Google Scholar 

  19. Monte, S.J. and Sugerman, G. (1979) A new generation of age and waterresistant reinforced plastics, Polym. Plastics Tech. Engg, 12, 115–35.

    Article  Google Scholar 

  20. Lobe, V.M. and White, J.L. (1979) An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt, Polym. Engg Sci., 19, 617–24.

    Article  CAS  Google Scholar 

  21. Wu, S. (1979) Order-disorder transitions in the extrusion of fiber-filled poly(ethylene terephthalate) and blends, Polym. Engg Sci., 19, 638–50.

    Article  CAS  Google Scholar 

  22. Kataoka, T., Kitano, T., Oyanagi, Y. and Sasahara, M. (1979) Viscous properties of calcium carbonate filled polymer melts, Rheol. Acta, 18, 635–9.

    Article  CAS  Google Scholar 

  23. Kitano, T., Kataoka, T., Nishimura, T. and Sakai, T. (1980) Relative viscosities of polymer melts filled with inorganic fillers, Rheol. Acta, 19, 764–9.

    Article  CAS  Google Scholar 

  24. Kitano, T., Nishimura, T., Kataoka, T. and Sakai, T. (1980) Correlation of dynamic and steady flow viscosities of filled polymer systems, Rheol. Acta, 19, 671–3.

    Article  CAS  Google Scholar 

  25. Crowson, R.J., Folkes, M.J. and Bright, P.F. (1980) Rheology of short glass fiber-reinforced thermoplastics and its applications to injection molding I. Fiber motion and viscosity measurement, Polym. Engg Sci., 20, 925–33.

    Article  CAS  Google Scholar 

  26. Crowson, R.J. and Folkes, M.J. (1980) Rheology of short glass fiberreinforced thermoplastics and its application to injection molding II. The effect of material parameters, Polym. Engg Sci., 20, 934–40.

    Article  CAS  Google Scholar 

  27. Goel, D.C. (1980) Effect of polymeric additives on the rheological properties of talc-filled polypropylene, Polym. Engg Sci., 20, 198–201.

    Article  CAS  Google Scholar 

  28. Tanaka, H. and White, J.L. (1980) Experimental Investigations of shear and elongational flow properties of polystyrene melts reinforced with calcium carbonate, titanium dioxide and carbon black, Polym. Engg Sci., 20, 949–56.

    Article  CAS  Google Scholar 

  29. Czarnecki, I. and White, J.L. (1980) Shear flow rheological properties, fiber damage and mastication characteristics of aramid, glass and cellulose-fiber reinforced polystyrene melts, J. Appl. Polym. Sci., 25, 1217–44.

    Article  CAS  Google Scholar 

  30. White, J.L., Czarnecki, I. and Tanaka, H. (1980) Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts, Rubber Chem. Tech., 53, 823–35.

    Article  CAS  Google Scholar 

  31. Hancock, M., Tremayne, P. and Rosevear, J. (1980) Fillers in polypropylene II. J. Polym. Sci., (Polym. Chem. Edn), 18, 3211–17.

    Article  Google Scholar 

  32. Knutsson, B.A., White, J.L. and Abbas, K.A. (1981) Rheological and extrusion characteristics of glass-fiber reinforced polycarbonate, J. Appl. Polym. Sci., 26, 2347–62.

    Article  CAS  Google Scholar 

  33. Cope, D.E. and Linnert, E. (1980) The lowdown on loading down resins using hydrophobic encapsulation, Plastic Engg, 37–9 (June).

    Google Scholar 

  34. Kitano, T., Kataoka, T. and Shirata, T. (1981) An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta, 20, 207–9.

    Article  CAS  Google Scholar 

  35. Han, C.D., Van der Weghe, T., Shete, P. and Haw, J.R. (1981) Effect of coupling agents on the rheological properties, processing and mechanical properties of filled polypropylene, Polym. Engg Sci., 21, 196–204.

    Article  CAS  Google Scholar 

  36. Stamhuis, J.F. and Loppe, J.P.A. (1982) Rheological determination of polymer-filler affinity, Rheol. Acta, 21, 103–5.

    Article  CAS  Google Scholar 

  37. Sharma, Y.N., Patel, R.D., Dhimmar, I.H. and Bhardwaj, I.S. (1982) Studies of the effect of titanate coupling agent on the performance of polypropylene-calcium carbonate composite, J. Appl. Polym. Sci., 27, 97–104.

    Article  CAS  Google Scholar 

  38. Nakatsuka, T., Kawasaki, H., Itadani, K. and Yamashita, S. (1982) Phosphate coupling agents for calcium carbonate filler, J. Appl. Polym. Sci., 27, 259–69.

    Article  CAS  Google Scholar 

  39. Lee, W.M., Abe, D.A., Chipalkatti, M.H. and Liaw, T.F. (1982) Rheological properties of particulate-filled linear low density polyethylenes, Proc. Ann. Conf. Reinf. Plast. Compos. Inst. Soc., Plast. Ind., 37 (12D), 7.

    Google Scholar 

  40. Juskey, V.P. and Chaffey, C.E. (1982) Rheology and tensile properties of polypropylene reinforced with glycerol-treated mica, Can. J. Chem. Engg, 60, 334–41.

    Article  CAS  Google Scholar 

  41. Hinkelmann, B. (1982) Zur analytischen beschreibung des fullstoff-einflusses auf das fliessverhalten von kunststoffschmelzen, Rheol. Acta, 21, 491–3.

    Article  Google Scholar 

  42. Utracki, L.A. and Fisa, B. (1982) Rheology of fiber or flake-filled plastics, Polym. Composites, 3, 193–211.

    Article  CAS  Google Scholar 

  43. White, J.L. (1982) Rheological behavior of highly filled/reinforced polymer melts, Plastics Compounding, 47–64 (Jan/Feb).

    Google Scholar 

  44. Bigg, D.M. (1982) Rheological analysis of highly loaded polymeric composites filled with non-agglomerating spherical filler particles, Polym. Engg Sci., 22, 512–18.

    Article  CAS  Google Scholar 

  45. Bigg, D.M. (1982) Rheological behavior of highly filled polymer melts, Polym. Engg Sci., 23, 206–10.

    Article  Google Scholar 

  46. Althouse, L.M., Bigg, D.M. and Wong, W.M. (1983) Evaluating the effectiveness of filler surface treatments, Plastics Compounding, (March/ April).

    Google Scholar 

  47. Lem, K.W. and Han, C.D. (1983) Rheological behavior of concentrated suspensions of particulates in unsaturated polyester resin, J. Rheol., 27, 263–88.

    Article  CAS  Google Scholar 

  48. Daley, L.R. and Rodriguez, F. (1983) Flow properties of ethylene-propylene terpolymer filled with silica modified by silane coupling agents, Ind. Eng. Chem. Prod. Res. Dev., 22, 695–8.

    Article  CAS  Google Scholar 

  49. Mutsuddy, B.C. (1983) Influence of powder characteristics on the rheology of ceramic injection molding mixtures, Proc. Brit. Ceram. Soc., 33, 117–37.

    CAS  Google Scholar 

  50. Chaffey, C.E. (1983) Reinforced thermoplastics: through flow to use, Ann. Rev. Mater. Sci., 13, 43–65.

    Article  CAS  Google Scholar 

  51. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1983) Rheograms of filled polymer melts from melt-flow index, Polym. Composites, 4, 53–63.

    Article  CAS  Google Scholar 

  52. Shenoy, A.V. and Saini, D.R. (1983) Interpretation of flow data for multicomponent polymeric systems, Colloid Polym. Sci., 261, 846–54.

    Article  CAS  Google Scholar 

  53. Suetsugu, Y. and White, J.L. (1983) The influence of particle size and surface coating of calcium carbonate on the rheological properties of its suspension in molten polystyrene, J. Appl. Polym. Sci., 28, 1481–501.

    Article  CAS  Google Scholar 

  54. Luo, H.L., Han, C.D. and Mijovic, J. (1983) Effects of coupling agents in the rheological behavior and physical mechanical properties of filled nylon 6, J. Appl. Polym. Sci., 28, 3387–98.

    Article  CAS  Google Scholar 

  55. Bigg, D.M. (1984) Complex rheology of highly filled thermoplastic melts, Proc. IX Intl. Congress on Rheology in Mexico, Adv. in Rheology, 3, 429–37.

    Google Scholar 

  56. Kitano, T., Kataoka, T. and Nagatsuka, Y. (1984) Shear flow rheological properties of vinylon and glass-fiber reinforced polyethylene melts, Rheol. Acta, 23, 20–30.

    Article  CAS  Google Scholar 

  57. Kitano, T., Kataoka, T. and Nagatsuka, Y. (1984) Dynamic flow properties of vinylon fiber and glass fiber reinforced polyethylene melts, Rheol. Acta, 23, 408–16.

    Article  CAS  Google Scholar 

  58. Suetsugu, Y. and White, J.L. (1984) A theory of thixotropic plastic viscoelastic fluids with a time-dependent yield surface and its comparison to transient and steady state experiments on small particle filled polymer melts, J. Non-Newtonian Fluid Mech., 14, 121–40.

    Article  CAS  Google Scholar 

  59. Hinkelmann, B. and Mennig, G. (1985) On the rheological behavior of filled polymer melts, Chem. Engg Comm., 36, 211–21.

    Article  CAS  Google Scholar 

  60. Bretas, R.E.S. and Powell, R.L. (1985) Dynamic and transient rheological properties of glass-filled polymer melts, Rheol. Acta, 24, 69–74.

    Article  CAS  Google Scholar 

  61. Saini, D.R., Shenoy, A.V. and Nadkarni, V.M. (1985) Effect of surface treatment on the rheological and mechanical properties of ferrite-filled polymeric systems, Polym. Engg Sci., 25, 807–11.

    Article  CAS  Google Scholar 

  62. Saini, D.R. and Shenoy, A.V. (1986) Viscoelastic properties of highly loaded ferrite-filled polymeric systems, Polym. Engg Sci., 26, 441–5.

    Article  CAS  Google Scholar 

  63. Shenoy, A.V. and Saini, D.R. (1986) Quantitative estimation of matrix filler interactions in ferrite-filled styrene-isoprene-styrene block copolymer systems, Polym. Composites, 7, 96–100.

    Article  CAS  Google Scholar 

  64. Saini, D.R., Shenoy, A.V. and Nadkarni, V.M. (1986) Melt rheology of highly loaded ferrite-filled polymer composites, Polym. Composites, 7, 193–200.

    Article  CAS  Google Scholar 

  65. Shenoy, A.V. and Saini, D.R. (1986) Wollastonite reinforced polypropylene composites: dynamic and steady state melt flow behavior, J. Reinf. Plastics Comp., 5, 62–73.

    Article  CAS  Google Scholar 

  66. Mutel, A.T. and Kamal, M.R. (1986) Characterization of the rheological behavior of fiber-filled polypropylene melts under steady and oscillatory shear using cone-and-plate and rotational parallel plate geometry, Polym. Composites, 7, 283–94.

    Article  CAS  Google Scholar 

  67. Edirisinghe, M.J. and Evans, J.R.G. (1987) Rheology of ceramic injection molding formulations, Br. Ceram. Trans. J., 86, 18–22.

    CAS  Google Scholar 

  68. Sacks, M.D., Khadilkar, C.S., Scheiffele, G.W., Shenoy, A.V., Dow, J.H. and Sheu, R.S. (1987) Dispersion and rheology in ceramic processing, Adv. in Ceramics, 24, 495–515.

    Google Scholar 

  69. Dow, J. H., Sacks, M.D. and Shenoy, A.V. (1988) Dispersion of ceramic particles in polymer melts, Ceram. Trans. (Ceram. Powder Sci. IIA), 1, 380–8.

    CAS  Google Scholar 

  70. Hunt, K.N., Evans, J.R.G. and Woodthorpe, J. (1988) The influence of mixing route on the properties of ceramic injection moulding blends, Br. Ceram. Trans. J., 17–21.

    Google Scholar 

  71. Takahashi, M., Suzuki, S., Nitanda, H. and Arai, E. (1988) Mixing and flow characteristic in the alumina/thermoplastic resin system, J. Am. Ceram. Soc., 17, 1093–9.

    Article  Google Scholar 

  72. Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. and Frechette, F.J. (1988) Rheological behavior of filled polymer systems I. Yield stress and shear-thinning effects, J. Rheol., 32, 703–35.

    Article  CAS  Google Scholar 

  73. Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. and Frechette, F.J. (1988) Rheological behavior of filled polymeric systems II. The effect of a bimodel size distribution of particulates, J. Rheol., 32, 751–71.

    Article  CAS  Google Scholar 

  74. Ishigure, Y., Nagaya, K., Mitsumatsu, F., Otabe, S., Hayashi, K., Sobajima, A. and Murase, I. (1989) Relationship between the flow characteristics of highly filled alumina or zirconia-organic binder and the properties of sintered products in injection molding processing, Rep. Gifu Pref. Ind. Res. Tech. Center, 21, 51–70.

    Google Scholar 

  75. Dow, J.H., Sacks, M.D. and Shenoy, A.V. (1990) Dispersion of alumina particles in polyethylene melts, Ceram. Trans. (Ceram. Powder Sci. III), 12, 431–42.

    CAS  Google Scholar 

  76. Edirisinghe, M.J., Shaw, H.M. and Tomkins, K.L. (1992) Flow behavior of ceramic injection moulding suspensions, Ceramics Int., 18, 193–200.

    Article  CAS  Google Scholar 

  77. Nielsen, L.E. (1974) Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, Vol. 2, Ch. 7, 379–86.

    Google Scholar 

  78. Han, C.D. (1976) Rheology in Polymer Processing, Academic Press, New York, 7, 182–8.

    Google Scholar 

  79. Nielsen, L.E. (1977) Polymer Rheology, Marcel Dekker, New York, Ch. 9, 133–57.

    Google Scholar 

  80. Paul, D.R. and Newman, S. (1978) Polymer Blends, Academic Press, New York, 1, Ch. 7, 295–352.

    Google Scholar 

  81. Vinogradov, G.V. and Malkin, A.Y. (1980) Rheology of Polymers, Mir Publishers, Moscow, 380–402.

    Google Scholar 

  82. Han, C.D. (1981) Multiphase Flow in Polymer Processing, Academic Press, New York.

    Google Scholar 

  83. Shenoy, A.V. (1988) Rheology of highly filled polymer melt systems, in Encyclopedia of Fluid Mechanics, (ed. N.P. Cheremisinoff), Gulf Publishing, Houston, TX, 7, 667–701.

    Google Scholar 

  84. Yanovsky, Yu.G. and Zaikov, G.E. (1990) Rheological properties of filled polymers, in Encyclopedia of Fluid Mechanics, (ed. N.P. Cheremisinoff), Gulf Publishing, Houston, TX, 9, 243–76.

    Google Scholar 

  85. Carreau, P.J. (1992) Rheology of filled polymeric systems, in Transport Processes in Bubbles, Drops and Particles (eds R.P. Chhabra and D. Dekee), Hemisphere Publishing, New York, 165–90.

    Google Scholar 

  86. Advani, S.G. (ed.) (1994) Flow and Rheology in Polymer Composites Manufacturing, Elsevier Science BV.

    Google Scholar 

  87. Boger, D.V. and Denn, M.M. (1981) Capillary and slit methods of normal stress measurements, J. Non-Newtonian Fluid Mech., 6, 163–85.

    Article  Google Scholar 

  88. Han, C.D. (1982) Polymer News, 8, 111–14.

    Google Scholar 

  89. Oda, K., White, J.L. and Clark, E.S. (1978) Correlation of normal stresses in polystyrene melts and its implications, Polym. Engg Sci., 18, 15–28.

    Google Scholar 

  90. Minoshina, W., White, J.L. and Spruiell, J.E. (1980) Experimental investigation of the influence of molecular weight distribution on the rheological properties of polypropylene melts, Polym. Engg Sci., 20, 1166–76.

    Article  Google Scholar 

  91. White, J.L. and Tanaka, H. (1981) Comparison of a plastic-viscoelastic constitutive equation with rheological measurements on a polystyrene melt reinforced with small particles, J. Non-Newtonian Fluid Mech., 8, 1–10.

    Article  Google Scholar 

  92. Hopper, J.R. (1967) Effect of oil and black on SBR rheological properties, Rubber Chem. Technol., 40, 463–75.

    Article  CAS  Google Scholar 

  93. Cotten, G.R. (1968) Rubber Age, 100, 51.

    CAS  Google Scholar 

  94. Medalia, A.T. (1970) Morphology of aggregates VI. Effective volume of aggregates of carbon black from electron microscopy; application to vehicle absorption and to die swell of filled rubber, J. Colloid Interf. Sci., 32, 115–31.

    Article  CAS  Google Scholar 

  95. Vinogradov, G.V., Malkin, A.Ya., Plotnikova, E.P., Sabsai, O.Yu. and Nikolayeva, N.E. (1972) Rheological properties of carbon black filled polymers, Int. J. Polym. Mat., 2, 1.

    Article  Google Scholar 

  96. Pisipati, R. and Baird, D.G. (1981) Correlation of rheological properties of filled nylon melts with processing performance, SPE ANTEC, 27, 32–4.

    Google Scholar 

  97. Mewis, J. and Metzner, A.B. (1974) The rheological properties of suspensions of fibers in Newtonian fluids subjected to extensional deformations, J. Fluid Mech., 62, 593–600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shenoy, A.V. (1999). Steady shear elastic properties. In: Rheology of Filled Polymer Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9213-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9213-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4029-9

  • Online ISBN: 978-94-015-9213-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics