Skip to main content

Abstract

As eukaryotes, filamentous fungi represent very peculiar characteristics of higher organisms: they have a complex genome organised in many chromosomes, the total length reaching 2–5 × 107 base pairs in the haploid forms of Ascomycetes and Basidiomycetes. Apart from the consequences brought about by such complexity, fungal genomic studies have been proved to be very useful in a variety of academic and biotechnological investigations. In fact, filamentous fungi possess a number of properties, which make them important scientifically as well as economically. The latter can be illustrated by a large variety of products that are produced by filamentous fungi such as organic acids, antibiotics, and numerous industrial enzymes. They are also used as food (mushrooms, truffles), and in the production of food additives (e.g. the meat extender ‘Quorn’) and condiments (e.g. Soy sauce). The recent research and development efforts have yielded a polyketide, mevilonin produced by Aspergillus terreus, which is used in the treatment of hyperchloesterolaemia. Stierle et al. (115) have reported that taxol from Taxomyces andreanae has antitumor activity. It has been suggested that phytase from Aspergillus spp. improves the quality of animal feed by releasing phosphate from phytate that enhances phosphate availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, D.S., Rey, MW., Berka, R.M., Armstrong, G., and Dunn-Coleman, N.S. (1992) Transformation of the thermophilic fungus Humicola grisea var. thermoidea and overproduction of Humicola glucoamylase, Curr. Genet. 21, 21–229.

    Article  Google Scholar 

  2. Araujo, E.F., Barros, E.G., Galdas, R.A., and Silva, D.O. (1983) Beta-glucosidase activity of a thermophilic cellulolytic fungus, Humicola sp. Biotechnol Lett. 5, 5–784.

    Article  Google Scholar 

  3. Archer, D.B., Jeenes, D.J., MacKenzie, D.A., Brightwell, G., Lambert, N., Lowe, G., Radford, S.E., and Dobson, C. (1990) Hen egg white lysozyme expressed in, and secreted from Aspergillus niger is correctly processed and folded, Biotechnol. 8, 8–745.

    Article  Google Scholar 

  4. Armaleo, D., Ye, G-N., Klein, T.M., Shark, K.B., Standrod, J.C., and Johnston, S.A. (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi, Curr. Gen. 17, 17–103.

    Article  Google Scholar 

  5. Azevedo, M.O., Felipe, M.S.S., Astolfi-Filho, S., and Radford, A. (1990) Cloning, sequencing and homologies of the cbh-1 (exoglucanase) gene of Humicola grisea var. thermoidea, J. Gen. Microbiol. 136, 136–2576.

    Google Scholar 

  6. Azevedo, M.O., Felipe, M.S.S., Alstolfi-Filho, S., and Radford, A. (1990) Sequence of the cbh-1 gene of Humicola grisea var. thermoidea, Nucleic Acids Res. 18, 668.

    Article  CAS  Google Scholar 

  7. Ballance, D.J. (1986) Sequences important for gene expression in filamentous fungi, Yeast 2, 2–236.

    Article  Google Scholar 

  8. Ballance, D.J. (1991) Transformation systems for filamentous fungi as an overview of fungal gene structure, in S.A. Leong, and R.M. Berka (eds.), Molecular Industrial Mycology, Marcel Dekker, New York, pp. 1–29.

    Google Scholar 

  9. Bennetzen, J.L. and Hall, B.D. (1982) Codon selection in yeast, J. Biol. Chem. 257, 257–3031.

    Google Scholar 

  10. Barnett, C., Berka, R., Shoemaker, S., Sumner, L.M., Liard, M., and Wilson, L. (1987) FEMS Symposium-Biochemistry and Genetics of Cellulose degradation, Paris.

    Google Scholar 

  11. Barnett, C., Berka, R., and Fowler, T. (1991) Cloning and amplification of the gene encoding an extracellular ß- glucosidase from Trichoderma reesei: Evidence for improved rates of saccharification of cellulosic substrates, Biotechnol. 9, 9–567.

    Article  CAS  Google Scholar 

  12. Bennett, J.W. and Lasure, L.L. (1985) Gene Manipulations in Fungi, Academic Press, Inc., New York.

    Google Scholar 

  13. Berka, R.M., Schneider, P., Golightly, E.J., Brown, S.H., Madden, M., Brown, K.M., Halkiner, T., Mondorf, K., and Xn, F. (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme produced in Aspergillus oryzae, Appl. Environ. Microbiol. 63, 63–3157.

    Google Scholar 

  14. Berka, R.M., Rey, M.W., Brown, K.M., Brun, T., and Koltz, A.V. (1998) Molecular characterization and expression of a phytase from the thermophilic fungus Thermomyces lanuginosus, Appl. Environ. Microbiol. 64, 64–4427.

    Google Scholar 

  15. Bogenhagen, D.F. and Brown, D.D. (1981) Nucleotide sequences in Xenopus 5s DNA required for transcription termination, Cell 24, 24–270.

    Article  Google Scholar 

  16. Bunni, L., Coleman, D.C., Mc Hale, L., Hackett, T.J., and Mc Hale, A.P. (1992) cDNA clone and expression of a Talaromyces emersonii amylase encoding genetic determinant in Escherichia coli, Biotechnol Lett. 14, 14–1114.

    Google Scholar 

  17. Brygoo, Y. and Deberchy, R. (1985) Transformation by integration in Podospora auserina. 1. Methodology and phenomenology, Mol. Gen. Genet. 200, 200–131.

    Article  Google Scholar 

  18. Buxton, F.P. and Radford, A. (1984) The transformation of mycelial spheroplasts of Neurospora crassa and the attempted isolation of an autonomous replication, Mol Gen. Genet. 196, 196–344.

    Article  Google Scholar 

  19. Cardello, L., Terenzi, H.F., and Jorge, J.A. (1994) A cystosolic trehalose from the thermophilic fungus Humicola grisea\ar. thermoidea, Microbiol. 140, 140–1677.

    Google Scholar 

  20. Case, M.E., Schweizer, M., Kushner, S.R., and Giles, N.H. (1979) Efficient transformation of Neurospora crassa by utilising hybrid plasmid DNA, Proc. Natl. Acad. Sci. USA 76, 76–5263.

    Article  Google Scholar 

  21. Chen, CM., Ward, M., Wilson, L., Sumner, L., and Shoemaker, S. (1987) Abstr. Proc. Am. Chem. Soc. p.194.

    Google Scholar 

  22. Christensen, T., Woeldike, H., Boel, E., Steen, S.B., Hjorsthsoej, K., Thim, L., and Hansen, M.T. (1988) High level expression of recombinant genes in Aspergillus oryzae, Biotechnol. 6, 6–1422.

    Article  Google Scholar 

  23. Covert, S.F., Wymelenberg, A.A., and Cullen, D. (1992) Structure, organisation and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58(7), 2168–2175.

    CAS  PubMed  Google Scholar 

  24. Cullen, D., Gray, G.L., Wilson, L.J., Hayenga, K.J., Lamsa, M.H., Rey, M.W., Nortom, S., and Berka, R.M. (1987) Controlled expression and secretion of bovine chymosin in Aspergillus nidulans, Biotechnol. 5, 5–376.

    Article  Google Scholar 

  25. Dhawale, S.S., Paietta, J.V., and Marzulf, G.A. (1984) A new, rapid and efficient transformation procedure for Neurospora, Curr. Genet. 8, 8–79.

    Article  Google Scholar 

  26. De Bertoldi, M., Lepidi, A.A., and Nuti, M.P. (1972) Classification of the genus Humicola Traaen: I. Preliminary reports and investigations, Mycopathol. Mycol. Appl. 46, 46–304.

    Article  Google Scholar 

  27. De Bertoldi, M., Lepidi, A.A., and Nuti, M.P. (1973) Significance of DNA base composition in classification of Humicola and related genera, Trans. Br. Mycol. Soc. 60, 60–85.

    Article  Google Scholar 

  28. Devchand, M. and Gwynne, D. (1991) Expression of heterologous proteins in Aspergillus, J. Biotechnol. 17, 17–50.

    Article  Google Scholar 

  29. Dickinson, L., Harboe, M., Van Heeswijck, R., Stroman, P., and Jepsen, L.P. (1987) Carlsberg Res. Commun. 52, 52–252.

    Article  Google Scholar 

  30. Erdmann, V.A. (1980) Collection of published 5S and 5.8S rRNA sequences and their precursors, Nucleic Acids Res. 8, r31–r47.

    Article  CAS  PubMed  Google Scholar 

  31. Farrel, J. and Campbell, L.L. (1969) Thermophilic bacteria and bacteriophages, Adv. Microbiol. 3, 3–109.

    Google Scholar 

  32. Finchman, J.R.S. (1989) Transformation in fungi, Microbiol. Rev. 53(1), 148–170.

    Google Scholar 

  33. Foster, L.M., Kozak, K.R., Loftus, M.G., Stevens, J.J., and Ross, I. (1993) The polymerase chain reaction and its application to filamentous fungi, Mycol. Res. 97(7), 769–781.

    Article  CAS  Google Scholar 

  34. Friedman, S.M. (1968) Protein synthesising machinery of thermophilic bacteria, Bacteriol Rev. 32, 32–38.

    Google Scholar 

  35. Galwitz, D. and Sures, I. (1980) Structure of a split yeast gene: Complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 77, 77–2550.

    Article  Google Scholar 

  36. Gerbi, S.A. (1985) in R.J. Mac Intyre (ed.), Molecular Evolutionary Genetics, Plenum Publishing Corp., New York, pp.419–517.

    Chapter  Google Scholar 

  37. Goto-Mamaoto, M., Ohunki, T., and Beppu, T. (1986) Intraspecific hybridisation by protoplast fusion in Mucoralses producing milk-clotting proteases, Agric. Biol Chem. 50, 50–1473.

    Google Scholar 

  38. Gray, G.L., Haygena, K., Cullen, D., Wilson L.J., and Norton, S. (1986) Primary structure of Mucor miehei aspartyl protease: evidence for a zymogen intermediate, Gene 48, 48–53.

    Article  Google Scholar 

  39. Gupta, A.K., Chaurasia, S., Gautam, S.P., and Hasija, S.K. (1992) Isolation of less amylase producing mutants of thermophilic fungus Aspergillus fumigatus, J. Indian Bot. Soc. 71, 71–134.

    Google Scholar 

  40. Gupta, A.K. and Gautam, S.P. (1992) Catabolite repression of amylase synthesis of the thermophilic Malbranchea sulfurea and isolation of derepressed mutants, Proc. DAE Symp. pp. 101–106.

    Google Scholar 

  41. Gupta, A.K. and Gautam, S.P. (1995) Improved production of extracellular a-amylase by thermophilic fungus Malbranchea sulfurea following protoplast fusion, World J. Microbiol. Biotechnol. 11, 11–195.

    Article  Google Scholar 

  42. Gurr, S.J., Unkles, S.E., and Kinghorn, J.R. (1987) The structure and organisation of nuclear genes of filamentous fungi, in J.L. Kinghorn (ed.), Gene Structure in Lower Eukaroytes, IRL Press, pp.93–193.

    Google Scholar 

  43. Gwynne, D.I., Buxton, F.P., Williams, S.A., Garven, S., and Davies, R.W. (1987) Genetically engineered secretion of actives human interferon and a bacterial endoglucanase from Aspergillus nidulans, Biotechnol. Azevedo et al. 5,713–719.

    Article  CAS  Google Scholar 

  44. Fwynne, D.I. (1992) Foreign proteins, in J.R. Kinghorn and G. Turner (eds.), Applied Molecular Genetics of Filamentous Fungi, Blackie, Academic & Professional, London, pp. 132–151.

    Google Scholar 

  45. Hammer, J.E. and Timberlake, W.E. (1987) Functional organisation of the Aspergillus nidulans trpC promoter, Mol Cell. Biol. 7, 7–2359.

    Google Scholar 

  46. Harkki, A., Uusitalo, J., Bailey, M., Pentilla, M., and Knowles, J.K.C. (1989) A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei, Bio. J. Technol. 7, 7–603.

    Article  Google Scholar 

  47. Hakki, A., Mantyla, A, Pentilla, M., Muttilainen, S., Bohler, R., Suominen, P., Knowles, J., and Nevalaine, H. (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles, Enzyme Microb. Technol. 13, 13–233.

    Google Scholar 

  48. Hayashida, S. and Mo, K. (1986) Production and characterization of avicel-disintegrating endoglucanase from a protease-negative Humicola-grisea var. thermoidea mutant, Appl. Environ. Microbiol. 51, 51–1046.

    Google Scholar 

  49. Hynes, M.J. and Davis, A. (1986) The amdS gene of Aspergillus nidulans: control by multiple regulatory signals, Bio-Essays 5, 5–128.

    Google Scholar 

  50. Hughes, K., Case, M.E., Geever, R., Vapnek, D., and Giles, N.H. (1983) Chimeric plasmid that replicates autonomously in both E. coli and Neurospora crassa, Proc. Natl. Acad. Sci. USA 80, 80–1057.

    Article  Google Scholar 

  51. Jain, S., Durand, H., and Tiraby, G. (1992) Development of a transformation system for the thermophilic fungus Talaromyces sp. CL240 based on the use of phleomycin resistance as a dominant selectable marker, Mol. Gen. Genet. 234, 234–493.

    Article  Google Scholar 

  52. Jensen, E.B. and Boominathan, K.C. (1997) Thermophilic fungal expression system, US Patent No. 5, 604, 129.

    Google Scholar 

  53. Innis, M.A., Holland, M.J., McCabe, P.C., Cole, G.E., Wittman, V.P., Tal, R., Watt, K.W., Gelfand, D.H., Holland, J.P., and Meade, J.H. (1985) Expression, glycosylation and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae, Science 228, 228–26.

    Article  Google Scholar 

  54. Jethro, J., Ganesh, R., Goel, R., and Johri, B.N. (1993) Improvement of xylanase in Melanocarpus albomyces IIS-68 through protoplasting and enzyme immobilization, J. Microbiol. Biotechnol. 8(1), 17–28.

    CAS  Google Scholar 

  55. Kim, S.V. and Marzluf, G.A. (1988) Transformation of Neurospora crossa with the trp-1 gene and the effect of the host strain upon the fate of the transforming DNA, Curr. Genet. 13, 13–70.

    Article  CAS  Google Scholar 

  56. Kinghorn, J.R. and Turner, G. (1992) Applied Molecular Genetics of Filamentous Fungi, Blackie Acad. and Professional, London, pp.259.

    Book  Google Scholar 

  57. Kinsey, J.A. and Rambosek, J.A. (1984) Transformation of Neurospora crassa with the cloned am (glutamate dehydrogenase) gene, Mol Cell. Biol. 4, 4–122.

    Google Scholar 

  58. Knowles, J., Lethovaara, P., Teeri, T.T., Pentilla, M., Salovuori, J., and Andre, L. (1987) The application of recombinant-DNA technology to cellulases and lignocellulosic wastes, Phil. Trans. R. Soc. Lond. A-321, 321–454.

    Google Scholar 

  59. Knowles, J., Teeri, T.T., Lehtovaara, P., Pentilla, M., and Saloheimo, M. (1988) The use of gene technology to investigate fungal cellulolytic enzymes, in J.P. Aubert, P. Beguin and J. Millet (eds.), Biochemistry and genetics of cellulose degradation, Acad. press. London.

    Google Scholar 

  60. Kozak, M. (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs, Nucleic Acids Res. 12, 12–872.

    Google Scholar 

  61. Kuiper, M.T.R. and de Vries, H. (1985) A recombinant plasmid carrying the mitochondrial plasmid sequence of Neurospora intermedia La Belle yields new plasmid derivatives in Neurospora crassa transformants, Curr. Genet. 9, 9–477.

    Article  Google Scholar 

  62. Kurland, CG. (1987) Strategies for efficiency and accuracy in gene expression. 1. The major codon preference: a growth optimisations strategy, Trends Biochem. Sci. 12, 12–128.

    Google Scholar 

  63. Lawyer, F., Stoffel, S., Saiki, R.K., Myambo, K., Drummond, R., and Gelfand, D.H. (1989) Isolation, characterization and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus, J. Biol Chem. 264(11), 6427–7537.

    CAS  PubMed  Google Scholar 

  64. Lee, K.Y., Wahl, R., and Barbu, E. (1956) Contenu de bases purinique et des acides deoxyribonculeiques de bacteries, Ann. Inst. Pasteur 91, 91–224.

    Google Scholar 

  65. Leong, S.A. and Berka, R.M. (1991) Molecular Industrial Mycology: Systematics and Applications of Filamentous Fungi, Marcel Dekker, Inc., New York, pp. 292.

    Google Scholar 

  66. Lopes, T.S., Klootwijk, J., Veenstra, A.E., van der Aaar, P.C., van Heeri Khuizen, H., Raue, H.A., and Planta, R.J. (1989) High-copy-number integration into ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression, Gene 79, 79–206.

    Article  Google Scholar 

  67. Levis, R. and Penman, S. (1978) Processing steps and methylation in the formation of the ribosomal RNA of cultured Drosophila cells, J. Mol Biol. 121, 121–238.

    Article  Google Scholar 

  68. MacKenzie, D.A., Jeenes, D.J., Belshaw, N.J., and Archer, D.B. (1993) Regulation of secreted protein production by filamentous fungi: recent developments and perspectives, J. Gen. Microbiol. 139, 139–2307.

    Google Scholar 

  69. Maden, B.E.H., Salim, Robertson, J.S., Khan, M.S.N., and Tartof, K. (1975) FEBSSymps. 33, 129.

    Google Scholar 

  70. Mangiantiani, M.T., Tecce, G., Toshi, G., and Trentelance, A. (1965) A Study of ribosomes and ribonucleic acid from a thermophilic organism, Biochem. Biophys. Acta 103, 103–274.

    Google Scholar 

  71. Mc Dougall, J. and Nazar, R.N. (1983) Tertiary structure of the eukaryotic ribosomal 5S RNA, J. Biol Chem. 258, 258–5259.

    Google Scholar 

  72. Meyer, S.A. and Phaff, H.J. (1969) Deoxyribonucleic acid base composition in yeasts, J. Bacteriol. 97, 97–56.

    Google Scholar 

  73. Marmur, J., Falkow, S., and Mandel, M. (1963) New approaches to bacterial taxonomy, Ann. Rev. Microbiol. 12, 12–372.

    Google Scholar 

  74. Mishra, N.C. and Tatum, E.L. (1973) Non-mendelian inheritance of DNA-induced inositol independence in Neurospora, Proc. Natl Acad. Sci. USA 70, 70–3879.

    Article  Google Scholar 

  75. Moloney, A.P., Hackett, J.J., Considine, P.J., and Coughlan, M.P. (1983) Isolation of mutants of Talaromyces emersonii CBS 814.70 with enhanced cellulase activity, Enz. Microb. Technol 5, 5–264.

    Article  Google Scholar 

  76. Montenecourt, B.S. and Eveleigh, D.E. (1977) Preparation of mutants of Trichoderma reesei with enhanced cellulase production, Appl. Environ. Microbiol. 34(6), 777–782.

    CAS  PubMed  Google Scholar 

  77. Monti, R., Terenzi, H.F., and Jorge, J.A. (1991) Purification and properties of an extracellular xylanase from the thermophilic fungus Humicola grisea var. thermoidea, Can. J. Microbiol 37, 37–681.

    Article  Google Scholar 

  78. Morrison, K., Mc Carthy, U., and Mc Hale, A.P. (1987) Cellulase production by Talaromyces emersonii CBS 814.70 and a mutant UV7 during growth on cellulose, lactose and glucose containing media, Enz. Microb. Technol. 9, 9–425.

    Article  Google Scholar 

  79. Morrison, J., Jackson, E.A., Bunni, L., Coleman, D., and McHale, A.P. (1990) cDNA cloning and expression of a Talaromyces emersonii β-glucosidase determinant in Escherichia coli, Biochim. Biophys. Acta 1049, 1049–32.

    Google Scholar 

  80. Nageswar Rao, J.S. and Cheryail, J.D. (1979) Minor nucleotides in the ribosomal RNA of Thermomyces lanuginosa, Curr. Sci. 48, 48–32.

    Google Scholar 

  81. Nazar, R.N. and Matheson, A.T. (1977) Nucleotide sequence of Thermus aquaticus ribosomal 5S ribonucleic acid, J. Biol. Chem. 252, 252–4261.

    Google Scholar 

  82. Nazar, R.N. (1978) The release and reassociation of 5.8S rRNA with yeast ribosomes, J. Biol. Chem. 253, 253–4507.

    Google Scholar 

  83. Nazar, R.N. and Roy, K.L. (1978) Nucleotide sequence of rainbow trout (Salmo gairdneri) ribosomal 5.8S ribonucleic acid, J. Biol Chem. 253, 253–399.

    Google Scholar 

  84. Nazar, R.N., Wong, W.M., and Abrahmanson, L.A. (1987) Nucleotide sequence of the 18–25S ribosomal RNA intergenic region from a thermophilic Thermomyces lanuginosus, J. Biol. Chem. 262, 262–7527.

    Google Scholar 

  85. Nevalainen, H. (1985) Genetic improvement of enzyme production in industrially important fungal strains. VTT. Biotechnol Laboratory. Technical Research Centre of Finland. Espoo, Finland.

    Google Scholar 

  86. Nevalaiiten, K.M.H., Pentilla, M.E., Harkki, A. Teeri, and Knowles, J. (1990) The molecular biology of Trichoderma and its application to the expression of both homologous and heterologous genes, in S.A. Leong and R.M. Berka (ed.), Molecular Industrial Mycology, Chapter 6, Marcel Dekker, Inc. N.Y.

    Google Scholar 

  87. Nishikawa, K. and Takemura, S. (1974) Nucleotide sequence of 5S RNA from Torulopsis utilis, FEBS Lett. 40, 40–109.

    Article  Google Scholar 

  88. Novick, P. and Botstein, D. (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants, Cell 40, 40–416.

    Article  Google Scholar 

  89. Nyyssonen, E., Pentilla, M., Harkki, A., Knowles, J.K.C., and Keranen, S. (1993) Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei, Biotechnol. 11, 11–595.

    Article  Google Scholar 

  90. Ohunki, T., Etoh, Y., and Beppu, T. (1982) Intraspecific and interspecific hybridisation of Mucor pusillus and M. miehei by protoplast fusion, Agric. Biol. Chem. 46, 46–458.

    Google Scholar 

  91. Olsen, O. and Thomsen, K.K. (1991) Improvement of bacterial β-glucanase thermostability by glycosylation, J. Gen. Microbiol. 137, 137–585.

    Google Scholar 

  92. Osawa, S. and Hori, H. (1979) in G. Chamblis et al (eds.), Ribosomes: Structure, Function and Genetics, University Park Press, Baltimore, Azevedo et al pp.333–354.

    Google Scholar 

  93. Orbach, M.J., Porro, E.B., and Yanofsky, C. (1986) Cloning and characterization of the gene for ß-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker, Mol Cell. Biol 6, 6–2461.

    Google Scholar 

  94. Peberdy, J.F., Caten, CE., Ogden, J.E., and Bennett, J.W. (1991) Applied Molecular Genetics of Fungi, Cambridge Univ. Press, Cambridge, pp.187.

    Google Scholar 

  95. Pedersen, S. (1984) Escherichia coli ribosomes translate in vivo with variable rate, EMBO J. 3, 3–2898.

    Google Scholar 

  96. Paralta, R.M., Terenzi, H.F., and Jorge, J.A. (1990) β-D- glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme, Biochim. Biophys. Acta 1033, 1033–249.

    Google Scholar 

  97. Picard, M., Debuchy, R., Julien, J., and Brigoo, Y. (1987) Transformation by integration in Prdospora anserina. II. Targeting to the resident locus with cosmids and instability of the transformants, Mol Gen. Genet. 210, 210–134.

    Article  Google Scholar 

  98. Pizzirani-Kleiner, A.A., Neirotti, E., Goldman, G.H., Azevedo, J.L., Furlaneto, M.C., Vicente, V.A., and Rodriguez, E.C. (1988) Asilamiento y estudios geneticos para el mejoramiento de hongos celuloliticos, Interferon y Biotechnol. 5(1), 77–79.

    Google Scholar 

  99. Punt, P.J., Oliver, R.P., Dingermanse, M.A., Pouwels, P.H., and van den Hondel, C.A.M.J.J. (1987) Transformation of Aspergillus based on hygromycin B resistance marker from Escherichia coli, Gene 56, 56–124.

    Article  Google Scholar 

  100. Punt, P.J., Zegers, N.D., Busscher, M., Pouwels, P.H., and van den Hondel, C.A.M.J.J. (1991) Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene, J. Biotechnol. 17, 17–34.

    Article  Google Scholar 

  101. Ramon, D., Carramolino, L., Patino, C., Sanchez, F., and Penalava, M.A. (1987) Cloning and characterization of the isopenicillin N synthesis gene mediating the formation of the ß-lactam ring in Aspergillus nidulans, Gene 57, 57–181.

    Article  Google Scholar 

  102. Rordrigues, E.C, Tanaka, Y., and Pizzirani-Kleiner, A.A. (1990) Cytological observation in conidial and mycelial cells of Humicola sp. Rev. Microb. 21(3), 232–237.

    Google Scholar 

  103. Rodrigues, E.C, Pizzirani-Kleiner, A.A., Tanaka, Y., and Jorge, J.A. (1991) Cytogenetic and biochemical aspects of the cellulolytic fungus Humicola sp. Mycol Res. 95(2), 169–177.

    Article  CAS  Google Scholar 

  104. Rutledge, B.J. (1984) Molecular characterization of the qa-4 gene of Neurospora crassa, Gene 32, 32–287.

    Article  Google Scholar 

  105. Sanchez-Torres, P., Gonzalez, R., Perez-Gonzalez, J.A., Gonzales-Candelas, L., and Ramon, D. (1994) Development of a transformation system for Trichoderma longibrachiatum and its use for constructing multicopy transformants for the egl 1 gene, Appl Microbiol. Biotechnol. 41, 41–446.

    Google Scholar 

  106. Schein, C.H. (1989) Production of soluble recombinant proteins in bacteria, Biotechnol. 7, 7–1149.

    Article  Google Scholar 

  107. Sen, S. and Chakrabarty, S.L. (1984) Isolation of cellulase hyperproductive mutants of Myceliophthora thermophila D-14, Internat. Biotechnol. Symp. 2, 604–605.

    Google Scholar 

  108. Sharma, V.K. and Goel, R. (1989) High cellulase-producing mutants of Sporotrichum thermophile, J. Gen. Appl. Microbiol. 35, 35–166.

    Article  Google Scholar 

  109. Shah, D.M., Hightower, R.C, and Meagher, R.B. (1983) Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not, J. Mol Appl. Genet. 2, 2–126.

    Google Scholar 

  110. Silva, R., Yim, D.K., and Park, Y.K. (1994) Application of thermostable xylanases from Humicola sp. for pulp improvement,.J. Ferm. Bioeng. 77(1), 109–111.

    Article  Google Scholar 

  111. Sims, P.F., Soares-Felipe, M.S., Wang, Q., Gent, M.E., Tempelaars, C., and Baroda, P. (1994) Different expression of multiple exo-cellobiohydrolase I-like genes in the lignin-degrading fungus Phanerochaete chrysosporium, Mol Microb. 12(2), 209–216.

    Article  CAS  Google Scholar 

  112. Singh, S., Sukhdeep Kaur, Gupta, U., Rubinder Kaur, and Chadha, B.S. (1998) Protoplasting in amylase producing Thermomyces lanuginosus, Indian J. Microbiol. 38, 38–87.

    Google Scholar 

  113. Stahl, U. and Tudzynksi, P. (1992) Molecular Biology of Filamentous Fungi, VCH, Berlin, pp.256.

    Google Scholar 

  114. Stenesh, J. and Yang, C (1967) Characterization and stability of ribosomes from mesophilic and thermophilic bacteria, J. Bacteriol. 93, 93–936.

    Google Scholar 

  115. Stierle, A., Strobel, G., and Stierle, D. (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew, Science 260, 260–216.

    Article  Google Scholar 

  116. Stoh, L.L., Atkins, A., and Lambowitz, A.M. (1984) Characterization of deletion derivatives of an autonomously replicating Neurospora plasmid, Nucleic Acids Res. 12, 12–6178.

    Google Scholar 

  117. Stratsma, G. and Samson, R.A. (1993) Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost, Mycol. Res. 97(3), 321–328.

    Article  Google Scholar 

  118. Subramanyam, CS., Cassidy, B., Bausch, H., and Rothblum, L.I. (1982) Nucleotide sequence of the region between the 18S rRNA sequence and 28S rRNA sequence of rat ribosomal DNA, Nucleic Acids Res. 10, 10–2680.

    Google Scholar 

  119. Teeri, T.T., Lehtovaara, P., Kauppinen, I., Salovuori, I., and Knowles, J. (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II, Gene 51, 51–52.

    Article  Google Scholar 

  120. Tekamp-Olsen, P. and Valenzuela, P. (1990) Curr. Opin. Biotechnol 1, 1–35.

    Article  Google Scholar 

  121. Tilburn, J., Scazocchio, C., Taylor, G.G., Zabicky-Zissima, J.H., Lockington, R.A., and Davis, R.W. (1983) Transformation by integration in Aspergillus nidulans, Gene 26, 26–221.

    Article  Google Scholar 

  122. Tosi, L.R.O., Terenzu, H.F., and Jorge, J.A. (1993) Purification and characterization of an extracellular glucoamylase from the thermophilic fungus Humicola grisea var. thermodiea, Can. J. Microbiol. 39, 39–852.

    Article  Google Scholar 

  123. Turgeon, B.G., Garber, R.C., and Yoder, O.C. (1987) Development of a fungal transformation system based on selection of sequences with promoter activity, Mol. Gen. Genet. 201, 201–453.

    Google Scholar 

  124. Turner, G. (1990) In T. Harris (ed.), Protein Production by Biotechnology, Elsevier, New York.

    Google Scholar 

  125. Unkles, S.E. (1992) Gene organisation in industrial filamentous fungi, in J.R. Kinghorn and G. Turner (eds.), Applied Molecular Genetics of Filamentous Fungi, pp.28–53.

    Chapter  Google Scholar 

  126. Upshall, A., Kuonar, A., Bailey, M., Parker, M., Favreau, M., Lewison, K., Joseph, M., Maraganore, S., and Mc Knight, G. (1987) Biotechnol. 5, 5–1304.

    Article  Google Scholar 

  127. Valenzuela, P., Bell, G.I., Venegas, A., Sewell, E.T., Masiarz, F.R., De Gennaro, L.J., Weinberg, F., and Rutter, W.J. (1977) Ribosomal RNA genes of Saccharomyces cerevisiae II. Physical map and nucleotide sequence of the 5S ribosomal gene and adjacent intergeneric regions, J. Biol. Chem. 252, 252–8135.

    Google Scholar 

  128. van Brunt, J. (1986) Fungi: the perfect hosts? Biotechnol. 4(12), 1057–1062.

    Article  Google Scholar 

  129. Vandekerckhove, J. and Weber, K. (1978) The amino acid sequence of Physarum actin, Nature 276, 276–721.

    Article  Google Scholar 

  130. Weldman, G.M., Brand, R.C., Klootwijk, J., and Planta, R.J. (1980) Some characteristics of processing sites in ribosomal precursor RNA of yeast, Nucleic Acids Res. 8, 8–2920.

    Google Scholar 

  131. Verdoes, J.C., Punt, P.J., Stouthamer, A.H., and van den Hondel, C.A.M.J.J. (1994) The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene, Gene 145, 145–187.

    Article  Google Scholar 

  132. Verdoes, J.C., van Diepeningen, A.D., Punt, P.J., Debets, A.J.M., Stouthamer, A.H., and van den Hondel, C.A.M.J. (1994) Evaluation of molecular and genetic approaches to generate glucoamylase overproducing strains of Aspergillus niger, J. Biotechnol. 36, 36–175.

    Article  Google Scholar 

  133. Vollmer, S.J. and Yanofsky, C. (1986) Efficient cloning of genes of Neurospora crassa, Proc. Natl. Acad. Sei USA 63, 63–4873.

    Google Scholar 

  134. Wada, M., Beppu, T., and Horinouchi, S. (1996) Integrative transformation of the Zygomycete Rhizomucorpusillus by endogenes recombination, Appl. Microbiol. Biotechnol. 45, 45–657.

    Article  Google Scholar 

  135. Walker, K., Wong, W.M., and Nazar, R.N. (1990) Termination region in rRNA genes from a eukaryotic thermophile Thermomyces lanuginosus, Mol. Cell. Biol. 10, 10–381.

    Google Scholar 

  136. Weider, H., Yuan, R., and Crothers, D.M. (1977) Does 5S RNA function by a switch between two secondary structures? Nature 266, 266–194.

    Article  Google Scholar 

  137. White T.J., Bruns, T., Lee, S., and Taylor, J. (1989) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in M.A. Innis, D.H. Glefand, J.J. Sninsky and T.J. White (ed.), PCR Protocols: A guide to Methods and Applications, Acad. Press, N.Y., p.315–322.

    Google Scholar 

  138. Wildeman, A.G. and Nazar, R.N. (1981) Studies on the secondary structure of 5.8S rRNA from a thermophile Thermomyces lanuginosus, J. Biol. Chem. 256, 256–5682.

    Google Scholar 

  139. Wildeman, A.G. and Nazar, R.S. (1982) Structural studies of 5S ribosomal RNAs from a thermophilic fungus Thermomyces lanuginosus, J. Biol. Chem. 257, 257–11404.

    Google Scholar 

  140. Wildeman, A.G. (1988) A putative ancestral actin gene present in a thermophilic eukaryote: novel combination of intron position, Nucleic Acids Res. 16, 16–2564.

    Article  Google Scholar 

  141. Williams J.G.K., Kubelik, A.R., Livak, K.L., Rafalski, J.A., and Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18, 18–6535.

    Google Scholar 

  142. Woods, J.P. and Goldman, W.E. (1993) Autonomous replication of foreign DNA in Histoplasma capsulatum: role of native telomeric sequences, J. Bacteriol. 175(3), 636–641.

    CAS  PubMed  Google Scholar 

  143. Wrede, P. and Erdmann, V.A. (1977) Escherichia coli 5S RNA binding proteins L18 and L25 interact with 5.8S RNA but not with 5S RNA from yeast ribosomes, Proc. Natl. Acad. Sci. USA 74, 74–2709.

    Article  Google Scholar 

  144. Yamashita, t., Higashi, S., Higashi, T., Machida, H., Iwasaki, S., Nishiyama, M., and Beppu, T. (1994) Mutation of a fungal aspartic proteinase, Mucor pusillus rennin, to decrease thermostability for use as a milk coagulant, J. Biotechnol 32, 32–28.

    Article  Google Scholar 

  145. Ziekus, J.G., Taylor, M.W., and Brock, T.D. (1970) Thermal stability of ribosomes and RNA from Thermus aquaticus, Biochim. Biophys. Acta 204, 204–544.

    Google Scholar 

  146. Zimmermann, A.L.S., Terenzi, H.F., and Jorge, J.A. (1990) Purification and properties of an extracellular conidial trehalase from Humicola grisea var. thermoidea, Biochem. Biophys. Acta 1036, 1036–46.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Azevedo, M.O., Felipe, M.S.S., Satyanarayana, T. (1999). Molecular and General Genetics. In: Johri, B.N., Satyanarayana, T., Olsen, J. (eds) Thermophilic Moulds in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9206-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9206-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5315-2

  • Online ISBN: 978-94-015-9206-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics