Skip to main content

Abstract

Temperature is one of the key physical variables that determine sustenance of living beings on earth. Microorganisms are known to have arrived on the scene nearly 4 billion years ago at a time when temperatures were likely to be in extremes. That this indeed was true has been shown by the discovery of microorganisms from geothermal areas around the world and has pushed up our viewpoint concerning the uppermost temperature for existence of life forms to above boiling water. All microbes recovered until now from such extremes are prokaryotes suggesting distinct limit for eukaryotic life forms, which currently extends to 62°C. However, notwithstanding the drastic difference between the upper temperature limits for the existence of prokaryotes and eukaryotes, it is definitely of some consequence that proteins from the latter have been found to be stable up to 95°C or higher (46).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, D.S., Rey, M.W., Berka, R.M., Armstrong, G., and Dunn Coleman, N.S. (1992) Transformation of the thermophilic fungus Humicola grisea var. thermoidea and overproduction of Humicola glucoamylase, Curr. Gent. 21, 21–229.

    Google Scholar 

  2. Azevedo, M.O., Felipe, M.S.S., Astolfie-Filho, S., and Radford, A. (1990) Cloning, sequencing, and homologies of Cbh-1 (exoglucanase) gene of Humicola grisea var. thermoidea, J. Gen. Microbiol. 136, 136–2576.

    Google Scholar 

  3. Barnes, J.G., Eggins, H.O.W., and Smith, E.L. (1972) Preliminary stages in the development of a process for the microbial upgrading of waste paper, Int. Biodetn. Bull. 8, 8–116.

    Google Scholar 

  4. Basha, S.Y. and Palvivelu, P. (1995) Two simple non-enzymatic procedures to isolate high molecular weight DNA from fungi, Curr. Sci. 68, 68–588.

    Google Scholar 

  5. Berka, R.M., Rey, M.W., Brun, T., and Klotz, A.V. (1998) Molecular characterization and expression of a phytase gene from thermophilic fungus Thermomyces lanuginosus, Appl. Environ. Microbiol. 64, 64–4427.

    Google Scholar 

  6. Boel, E., Huge-Jensen, B., Christensen, M, Thim, L., and Fill, N.P. (1988) Rhizomucor miehei triglyceride lipase is synthesised as a precursor, Lipids 23, 23–706.

    Article  Google Scholar 

  7. Brady, L., Andrez, M.B., Derwendra, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jense, B., Norskov, L., Thim, L., and Ulrich, M. (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase, Nature 343, 343–770.

    Article  Google Scholar 

  8. Brock, T.D. (1986) Thermophiles: General, Molecular and Applied Microbiology, John Wiley and Sons.

    Google Scholar 

  9. Brozzowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L. (1991) A model for interfacial activation in lipases from the structure of a fungal lipase inhibitor complex, Nature 351, 351–494.

    Article  Google Scholar 

  10. Bunni, L., Coleman, DC, McHale, L., Hackett, T.J., and Mettale, A.P. (1992) cDNA cloning and expression of a Talaromyces emersonii amylase encoding genetic determinant in Escherichia coli, Biotech. Lett 14, 14–1114.

    Google Scholar 

  11. Chang, Y. and Hudson, H.J. (1967) Fungi of wheat straw compost, I, Ecological studies, Trans. Br. Mycol. Soc. 50, 50–666.

    Google Scholar 

  12. Chauhan, S., Prakash, A., Satyanarayana, T., and Johri, B.N. (1985) Utilization of C1 compounds by thermophilic fungi, Nat. Acad. Sci. Lett. Part B, 167–169.

    Google Scholar 

  13. Christensen, T., Woeldike, H., Boel, E., Steen, S.B., Hjortshoej, K., Thim, L., and Hansen, M.T. (1988) High level expression of recombinant genes in Aspergillus oryzae, Biotechnol. 6, 6–1422.

    Article  Google Scholar 

  14. Cooney, D.G. and Emerson, R. (1964) Thermophilic Fungi: An account of their biology, activities and classification. W.H. Freeman, San Francisco.

    Google Scholar 

  15. Crisan, E.V. (1969) The proteins of thermophilic fungi, in: Current Topics in Plant Sciences, Academic Press, New York, pp. 32–33.

    Google Scholar 

  16. Crisan, E.V. (1973) Current concepts of thermophilism and the thermophilic fungi, Mycologia 65, 65–1188.

    Article  Google Scholar 

  17. de Bertoldi, M., Lepidi, A.A., and Nuti, M.P. (1973) DNA base composition in classification of Humicola and related genera, Trans. Br. Mycol. Soc. 60, 60–85.

    Article  Google Scholar 

  18. Dickinson, L., Harboe, M., van Heeswijck, R., Stormen, P., and Jespen, L.P. (1987) Carlsberg Res. Commun. 52, 52–252.

    Article  Google Scholar 

  19. Ellis, D.H. (1982) Ultrastructure of thermophilic fungi IV, Conidial ontogeny in Thermomyces, Trans. Br. Mycol. Soc. 77: 229–241.

    Article  Google Scholar 

  20. Emerson, R. (1968) Thermophiles, in G.C. Ainsworth and A.A, Susman (eds.), The Fungi: An Advanced Treatise, Vol.3, Academic Press, New York, pp. 105–128.

    Google Scholar 

  21. Evans, H.C. (1971) Thermophilic fungi of coal spoils tips II, Occurrence, distribution, and temperature relationships, Trans. Br. Mycol. Soc. 57, 57–266.

    Google Scholar 

  22. Garg, S.K. and Johri, B.N. (1994) Rennet: Current trends and future research, Food Rev. Internat. 10, 10–355.

    Article  Google Scholar 

  23. Grajek, W. (1988) Production of protein by thermophilic fungi from sugarbeet pulp in solid state fermentation, Biotechnol. Bioeng. 32, 32–260.

    Article  Google Scholar 

  24. Griffon, E. and Maublanc, A. (1911) Deux moisissures thermophilics, Bull. Soc. Mycol. France 27, 27–74.

    Google Scholar 

  25. Gupta, S.D. and Maheshwari, R. (1978) Is organic acid required for nutrition of thermophilic fungi? Arch. Microbiol. 141, 141–169.

    Google Scholar 

  26. Henssen, A. (1957) Über die bedeutung der thermophilen microorganismen fur die zersetszung des Stallmistes, Arch. Mikrobiol. 27, 27–81.

    Article  Google Scholar 

  27. Jaitley, A.K., Johri, B.N., and Goel, R. (1993) Increased β-glucosidase activity of mutants of Sporotrichum (Chrysosporium) thermophile Apinis through protoplast fusion, Ind. J. Microbiol 33, 33–178.

    Google Scholar 

  28. Jensen, E.B. and Boominathan, K.C. (1997) Thermophilic fungal expression system, US Patent No. 5,604,129.

    Google Scholar 

  29. Jethro, J., Ganesh, R., Goel, R., and Johri, B.N. (1993) Improvement of xylanase in Melanocarpus albomyces IIS-68 through protoplast fusion and enzyme immobilization, J. Microb. Biotechnol. 8, 8–28.

    Google Scholar 

  30. Johri, B.N. (1982) Ultrastructure of germinating sporangiospores of Rhizopus rhizopodformis Cohn (Zopf), a thermophile, Curr. Sci. 51, 51–524.

    Google Scholar 

  31. Johri, B.N. (1983) Fine structure in freeze fractured sporangiospores of Rhizopus rhizopodformis, a thermophilic mould, Trop. Pl. Sci. Res. 1, 1–140.

    Google Scholar 

  32. Johri, B.N. and Satyanarayana, T. (1986) Thermophilic moulds: Perspectives in basic and applied research, Indian Rev. Life Sci. 6, 6–100.

    Google Scholar 

  33. La Touche, C. J. (1950) On a thermophilic species of Chaetomium, Trans. Br. Mycol. Soc. 33, 33–104.

    Article  Google Scholar 

  34. Lindt, W. (1886) Mitteilungen uber einige neue pathogene Schimmelpilze, Arch. Exp. Path. Pharmakol. 21, 21–298.

    Google Scholar 

  35. Mahajan, M.K., Johri, B.N., and Gupta, R.K. (1986) Influence of desiccation stress in a xerophilic thermophile, Humicola sp. Curr. Sci. 56, 56–930.

    Google Scholar 

  36. Moo-Young, M., Chahal, D.S., Swan, J.E., and Robinson, C.W. (1977) SCP production by Chaetomium cellulolyticum, a thermotolerant cellulolytic fungus, Biotechnol. Bioeng. 19, 19–528.

    Article  Google Scholar 

  37. Prakash, A. (1984) Antagonistic attributes of thermophilic fungi and thermophilism, Ph.D. Thesis, Bhopal University, Bhopal, pp. 66.

    Google Scholar 

  38. Prasad, A.R.S. and Maheshwari, R. (1978) Growth and trehalase activity in the thermophilic fungus Thermomyces lanuginosus, Proc. Ind. Acad. Sci. 87B, 231–241.

    Google Scholar 

  39. Prasad, A.R.S., Kurup, C.K., and Maheshwari, R. (1979) Effect of temperature on respiration of a mesophilic and a thermophilic fungus, Plant Physiol. 64, 64–348.

    Article  Google Scholar 

  40. Rao, J.S.N, and Cherayil, J.D. (1979) Minor nucleotides in the ribosomal RNA of Thermomyces lanuginosus, Curr. Sci. 48, 48–5.

    Google Scholar 

  41. Rode, L.J., Foster, J.W., and Schuhardt, V.T. (1947) Penicillin production by a thermophilic fungus, J. Bacteriol. 53, 53–566.

    Google Scholar 

  42. Satyanarayana, T. (1978) Thermophilic microorganisms and their role in composting process, Ph.D. Thesis, University of Saugar, Sagar, pp. 213.

    Google Scholar 

  43. Satyanarayana, T. and Johri, B.N. (1984) Thermophilic fungi of paddy straw compost: their growth, nutrition and temperature relationships, Indian J. Bot. Soc. 63, 63–170.

    Google Scholar 

  44. Satyanarayana, T. and Johri, B.N. (1981) Volatile sporostatic factors of thermophilic fungal strains of paddy straw compost, Curr. Sci. 50, 50–766.

    Google Scholar 

  45. Satyanarayana, T. and Johri, B.N. (1992) Lipids from thermophilic moulds, Ind. J. Microbiol. 32, 32–14.

    Google Scholar 

  46. Satyanarayana, T., Johri, B.N., and Klein, J. (1992) Biotechnological potential of thermophilic fungi, in D. K. Arora, R.P. Elander and K.G. Mukherji (eds.), Handbook of Applied Mycology, Vol.4, Marcel Dekker, New York, pp. 729–761.

    Google Scholar 

  47. Sharma, H.S.S. and Johri, B.N. (1992) The role of thermophilic fungi in agriculture, In: Handbook of Applied Mycology, Vol.4, Marcel Dekker, New York, pp. 707–728.

    Google Scholar 

  48. Sharma, V.K. and Goel, R. (1989) High cellulase-producing mutants of Sporotrichum thermophile, J. Gen. Appl. Microbiol. 35, 35–166.

    Article  Google Scholar 

  49. Singhania, S., Satyanarayana, T. and Rajam, M.V. (1991) Polyamines of thermophilic moulds: distribution and effect of polyamine biosynthesis inhibitors on growth, Mycol. Res. 95, 95–917.

    Article  Google Scholar 

  50. Subrahmanyam, A. (1980) Studies on Thermoascus aurantiacus, Acta Mycologia 16, 16–131.

    Google Scholar 

  51. Tsiklinskya, P. (1899) Sur les mucedines thermophiles, Ann. Inst. Pasteur, Paris 13, 13–505.

    Google Scholar 

  52. Virk, S., Johri, B.N., and Singh, S.P. (1992) Protoplast from Malbranchea pulchella var. sulfurea: Isolation and regeneration, J. Gen. Appl. Microbiol. 38, 38–78.

    Article  Google Scholar 

  53. Wildeman, G. (1988) A putative ancestral actin gene present in a thermophilic eukaryote: novel combination of intron position, Nucleic Acids Res. 16, 16–2564.

    Article  Google Scholar 

  54. Wright, C., Kafkewitz, D., and Somberg, E.W. (1983) Eukaryotic thermophily: Role of lipids in the growth of Talaromyces thermophilus, J. Bacteriol. 156, 156–497.

    Google Scholar 

  55. Wali, S.S., Mattoo, A.K., and Modi, V.V. (1978) Stimulation of growth and glucose catabolite enzymes by succinate in some thermophilic fungi, Arch. Mikrobiol. 118, 118–53.

    Google Scholar 

  56. Yoshioka, H., Nagato, N., Chavaniot, S., Nilubol, N., and Hayashida, T. (1981) Purification and properties of thermostable xylanase from Talaromyces byssochlamydoides YH-50, Agric. Biol. Chem. 45, 45–2432.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johri, B.N., Olsen, J., Satyanarayana, T. (1999). Introduction. In: Johri, B.N., Satyanarayana, T., Olsen, J. (eds) Thermophilic Moulds in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9206-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9206-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5315-2

  • Online ISBN: 978-94-015-9206-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics