Skip to main content

Geometric Synthesis of Manipulators Under Kinematic Constraints

  • Conference paper
Integrated Design and Manufacturing in Mechanical Engineering ’98

Abstract

In this paper the improvement of a preliminary design process based on an iterative and interactive synthesis procedure is proposed. The problem deals with the determination of dimensional parameters of a manipulator able to manage a set of elementary geometrical tasks defined by the position and the orientation of the tool frame under kinematic performance constraints. The kinematic constraints (requested velocity at end-effector level) are included as a penalty function. The approach is validated with a planar robot manipulator (i.e. with three revolute joints) where we show that the solution obtained for geometrical synthesis solving problem has to be modified in order to take into account the actuators capabilities with regard to maximum joint velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Ranjbaran, J. Angeles and M. A. Gonzales-Palacios “ The mechanical design of a seven- axes manipulator with kinematic isotropy” Journal of Intelligent and Robotic Systems, 14: 21–41,1995

    Article  MATH  Google Scholar 

  2. P. Chedmail, “Synthèse de Robots et de Sites Robotisés modélisation de Robots Souples”. Thèse d’état, Université de Nantes, Janvier 1990.

    Google Scholar 

  3. P. Chedmail et E. Ramstein “Robot mechanism synthesis and genetic algorithm” IEEE Conference on Robotics and Automation, pp 3466–3471,1996

    Google Scholar 

  4. O. Chocron and P. Bidaud “Evolutionary Algorithms in Kinematic Design of Robotic Systems”, International Conference on Intelligent Robots and Systems, September 7–11, 1997, Grenoble, France, Vol 2, pp 1111–1117

    Google Scholar 

  5. K. R. Etzel, J. M. McCarthy. “A metric for Spatial Displacements using Biquaternions on SO(4)”. Proceedings of the 1996 IEEE, International Conference on Robotics and Automation, Minneapolis, Minnesota, April 1996, pp 3185–3190

    Google Scholar 

  6. J. F. Kleinfinger, “Modélisation dynamique de robots à chaînes cinématiques simples, ar- borescente ou fermée en vue de leur commande”. Thèse de Doctorat, Université de Nantes, Mai 1986.

    Google Scholar 

  7. L. Ingber. “Very Fast Simulated Re-Annealing”. Math. Comput. Modelling, Vol. 12, pp 967–973,1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lester Ingber. “Adaptive Simulated Annealing (ASA) ”. URL http : //www. ingbe r. com the 4–15–99. Lester Ingber Research, P.O. Box 857, McLean, VA 22101–0857 USA

    Google Scholar 

  9. R. Matone et B. Roth, “The Effects of Actuation Schemes on the Kinematic Performance of Manipulators”. Transaction of the ASME, Journal of Mechanical Design, Vol 119, June 1997, pp. 212–217.

    Article  Google Scholar 

  10. C. Paredis et P. Khosla, “Kinematic design of serial link manipulators from task specifications”. International Journal of robotics research, vol 3, n 12,1993, pp. 274–287.

    Google Scholar 

  11. Stéphane Régnier, “Une méthodologie distribuée et interactive pour l’aide à la conception de systèmes robotiques” Thèse Université Pierre et Marie Curie, Juillet 1996.

    Google Scholar 

  12. L. Schmidt et J. Cagan, “A computational model for a machine desgin”. Research in Engineering Design, vol 7, 1995. pp. 102–125.

    Article  Google Scholar 

  13. C. Wampler “Manipulator inverse kinematic solutions based on vector formulations and damped least-squared methods” IEEE Transactions on Systems, Man and Cybernetics, 16 (1), 1986, pp. 93–101.

    Article  MATH  Google Scholar 

  14. C. W. Wampler and A. P. Morgan “Solving the 6r inverse position problem usinga generic case solution methodology” Journal of Mechanism and Machine Theory, vol 26, n 1, 1991, pp 91–106

    Article  Google Scholar 

  15. T. Yoshikawa “Manipulability of robotic mechanisms” International Journal of Robotics Research, Vol 4, n2, 1985, pp 3–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Guerry, S., Ouezdou, F.B., Régnier, S. (1999). Geometric Synthesis of Manipulators Under Kinematic Constraints. In: Batoz, JL., Chedmail, P., Cognet, G., Fortin, C. (eds) Integrated Design and Manufacturing in Mechanical Engineering ’98. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9198-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9198-0_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5342-8

  • Online ISBN: 978-94-015-9198-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics