Advertisement

Lagrangian Relaxation Applications to Electric Power Operations and Planning Problems

  • A. J. Conejo
  • J. M. Arroyo
  • N. Jiménez Redondo
  • F. J. Prieto
Chapter
Part of the International Series on Microprocessor-Based and Intelligent Systems Engineering book series (ISCA, volume 20)

Abstract

This chapter presents the basic theory of both the Lagrangian Relaxation and the Augmented Lagrangian decomposition procedures. The presentation focuses mainly on algorithmic issues. To illustrate how these decomposition procedures work, three practical applications are analyzed: (i) unit commitment and short-term hydro-thermal coordination, (ii) decentralized optimal power flow, and (iii) long-term hydro-thermal coordination. Detailed bibliographical references are provided at the end of this chapter.

Keywords

Power System Dual Problem Primal Problem Lagrangian Relaxation Unit Commitment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batut, J., Renaud, A. and Sandrin, P. (1990) New Software for the Generation Rescheduling in the Future EDF National Control Center. Proceedings of the Tenth Power Systems Computation Conference, PSCC’90, pp. 1163–1170. Graz, Austria.Google Scholar
  2. 2.
    Batut, J. and Renaud, A. (1992) Daily Generation Scheduling Optimization with Transmission Constraints: a New Class of Algorithms. IEEE Transactions on Power Systems. Vol. 7, No. 3, pp. 982–989.CrossRefGoogle Scholar
  3. 3.
    Bazaraa M.S., Sherali H.D., and Shetty C.M. (1993) Nonlinear Programming, Theory and Algorithms. Second Edition, John Wiley and Sons, New York.zbMATHGoogle Scholar
  4. 4.
    Benders, J.F. (1962) Partitioning Procedures for Solving Mixed-Variables Programming Problems. Numerische Mathematik. Vol. 4, pp. 238–252.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bertsekas, D.P. (1982) Constrained Optimization and Lagrange Multiplier Methods, Academic Press, Cambridge.zbMATHGoogle Scholar
  6. 6.
    Bertsekas, D.P., Lauer, G.S., Sandell, N.R. and Posbergh, T.A.. (1983) Optimal Short-Term Scheduling of Large-Scale Power Systems. IEEE Transactions on Automatic Control. Vol. 28, No. 1, pp. 1–11.zbMATHCrossRefGoogle Scholar
  7. 7.
    Brännlund, H., Sjelvgren, D. and Bubenko, J. (1988) Short Term Generation Scheduling with Security Constraints. IEEE Transactions on Power Systems. Vol. 1, No. 3, pp. 310–316.CrossRefGoogle Scholar
  8. 8.
    Cohen, G. (1980) Auxiliary Problem Principle and Decomposition of Optimization Problems. Journal of Optimization Theory and Applications. Vol. 32, No. 3, pp. 277–305.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Conejo, A.J. and Aguado, J.A. (1998) Multi-Area Coordinated Decentralized DC Optimal Power Flow. Paper PE-320-PWRS-0-12-1997. Approved for publication in the IEEE Transactions of Power Systems.Google Scholar
  10. 10.
    Contaxis, G.C. and Kavatza, S.D. (1990) Hydrothermal Scheduling of a Multireservoir Power System with Stochastic Inflows. IEEE Transactions on Power Systems, Vol. PWRS-5, pp. 766–773.Google Scholar
  11. 11.
    Dantzig, G.B. and Infanger, G. (1992) Approaches to Stochastic Programming with Applications to Electric Power Systems. Lecture Notes on Optimization in Planning and Operation of Electric Power Systems, SVOR/ASRO, Thun.Google Scholar
  12. 12.
    Dillon, T.S., Edwin, K.W., Kochs, H.D. and Tand, R.J. (1978) Integer Programming Approach to the Problem of Optimal Unit Commitment with Probabilistic Reserve Determination. IEEE Transactions on Power Apparatus and Systems. Vol. PAS-97, No. 6, pp. 2154–2166.Google Scholar
  13. 13.
    Escudero, L.F., de la Fuente, J.L., García, C. and Prieto, F.J. (1996) Hydropower Generation Management under Uncertainty via Scenario Analysis and Parallel Computation. IEEE Transactions on Power Systems. Vol. PWRS-11, pp. 683–689.Google Scholar
  14. 14.
    Escudero, L.F., de la Fuente, J.L., Garcia, C. and Prieto, F.J. (1998) A Parallel Computation Approach for Solving Multistage Stochastic Network Problems. Approved for publication in the Annals of Operations Research.Google Scholar
  15. 15.
    Everett, H. (1963) Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources. Operations Research. Vol. 11, pp. 399–417.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ferreira, L.A.F.M. (1993) On the Duality Gap for Thermal Unit Commitment Problems. ISCAS’93, pp. 2204–2207.Google Scholar
  17. 17.
    Geoffrion, A.M. (1972) Generalized Benders Decomposition. Journal of Optimization Theory and Applications. Vol. 10, No. 4, pp. 237–260.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hiriart-Urruty, J.B., and Lemaréchal C. (1996) Convex Analysis and Minimization Algorithms. Vol. I and I I. Springer-Verlag, Belin.Google Scholar
  19. 19.
    Hobbs, W.J., Hermon, G., Warner, S. and Sheble, G.B. (1988) An Enhanced Dynamic Programming Approach for Unit Commitment. IEEE Transactions on Power Systems. Vol. 3, No. 3, pp. 1201–1205.CrossRefGoogle Scholar
  20. 20.
    Jiménez Redondo, N. and Conejo, A.J. (1998) Short-Term Hydro-Thermal Coordination by Lagrangian Relaxation: Solution of the Dual Problem. Paper PE-333-PWRS-0-12-1997. Approved for publication in the IEEE Transactions of Power Systems.Google Scholar
  21. 21.
    Luh, P.B., Zhang, D. and Tomastik, R.N. (1997) An Algorithm for Solving the Dual Problem of Hydrothermal Scheduling. IEEE Power Winter Meeting, Paper PE-601-PWRS-0-01-1997. New York.Google Scholar
  22. 22.
    Luenberger D.G. (1989) Linear and Nonlinear Programming. Second Edition, John Wiley and Sons, New York.Google Scholar
  23. 23.
    Medina, J., Conejo A., Pérez Thoden F. and Gonzalez del Santo J. (1994) Medium-Term Hydro-Thermal Coordination Via Hydro and Thermal Subsystem Decomposition. TOP. Vol. 2, No. 1, pp. 133–150.zbMATHCrossRefGoogle Scholar
  24. 24.
    Medina, J., Conejo, A.J., Jiménez Redondo, N., Pérez Thoden, F. and Gonzalez, J. (1996) An LP Based Decomposition Approach to Solve the Medium-Term Hydro-Thermal Coordination Problem. Proceedings of the Twelfth Power Systems Computation Conference, PSCC 96. Vol. I, pp. 397–405. Dresden, Germany.Google Scholar
  25. 25.
    Medina, J., Quintana, V.H., Conejo, A.J. and Pérez Thoden, F. (1998) A Comparison of Interior-Point Codes for Medium-Term Hydro-Thermal Coordination. Accepted for publication in the IEEE Transactions on Power Systems.Google Scholar
  26. 26.
    Medina, J., Quintana, V.H. and Conejo, A.J. (1998) A Clipping-off Interior-Point Technique for Medium-Term Hydro-Thermal Coordination. Paper PE009-PWRS-0-1-1998.Accepted for publication in the IEEE Transactions on Power Systems.Google Scholar
  27. 27.
    Mendes, V.M., Ferreira, L.A.F.M., Roldao, P. and Pestana, R. (1993) Optimal Short-Term Scheduling in Large Hydrothermal Power Systems. Proceedings of the Eleventh Power Systems Computation Conference, PSCC’93. Vol. II, pp. 1297–1303. Avignon, France.Google Scholar
  28. 28.
    Merlin, A. and Sandrin, P. (1983) A New Method for Unit Commitment at Electricité de France. IEEE Transactions on Power Apparatus and Systems. Vol. PAS-102, No. 5, pp. 1218–1225.Google Scholar
  29. 29.
    Muckstadt, J.A. and Koening, S.A. (1977) An Application of Lagrangian Relaxation to Scheduling in Power Generation Systems. Operation Research. Vol. 25, No. 3, pp. 387–403.zbMATHCrossRefGoogle Scholar
  30. 30.
    Pellegrino, F., Renaud, A. and Socroun, T. (1996) Bundle and Augmented Lagrangian Methods for Short-Term Unit Commitment. Proceedings of the Twelfth Power Systems Computation Conference, PSCC 96. Vol. II, pp. 730739. Dresden, Germany.Google Scholar
  31. 31.
    Pereira, M.V.F. and Pinto, L.M.V.G. (1991) Multi-Stage Stochastic Optimization Applied to Energy Planning. Mathematical Programming. Vol. 52, pp. 359–375.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Polyak B.T. (1987) Introduction to Optimization, Optimization Software, Inc, New York.Google Scholar
  33. 33.
    Rakic, M.V. and Marcovic, Z.M. (1994) Short Term Operation and Power Exchange Planning of Hydro-Thermal Power Systems. IEEE Transactions on Power Systems. Vol. 9, No. 1, pp. 359–365.CrossRefGoogle Scholar
  34. 34.
    Renaud, A. (1993) Daily Generation Management at Electricité de France: from Planning towards Real Time. IEEE Transactions on Automatic Control. Vol. 38, No. 7, pp. 1080–1093.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rockafellar, R.T. and Wets, R.J.-B. (1991) Scenario and Policy Aggregation in Optimization under Uncertainty. Mathematics of Operations Research. Vol. 16, pp. 119–147.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Rubinstein, R.Y. (1981) Simulation and the Monte Carlo Method, John Wiley and Sons, New York.zbMATHCrossRefGoogle Scholar
  37. 37.
    Sherkat, V.R., Campo, R., Moslehi, K. and Lo, E.O. (1985) Stochastic Long-Term Hydrothermal Optimization for a Multireservoir System. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, pp. 2040–2050.Google Scholar
  38. 38.
    Wang, S.J. and Shahidehpour, S.M. (1993) Power Generation Scheduling for Multi-Area Hydro-Thermal Systems with Tie Line Constraints, Cascaded Reservoirs and Uncertain Data“. IEEE Transactions on Power Systems, Vol. PWRS-8, pp. 1333–1340.Google Scholar
  39. 39.
    Wang, S.J., Shahidehpour, S.M., Kirschen, D.S., Mokhtari, S. and Irisarri, G.S. (1995) Short-Term Generation Scheduling with Transmission and Environmental Constraints using an Augmented Lagrangian Relaxation. IEEE Transactions on Power Systems. Vol. 10, No. 3, pp. 1294–1301.CrossRefGoogle Scholar
  40. 40.
    Wood, A.J. and Wollenberg, B.F. (1996) Power Generation, Operation and Control. Second Edition, John Wiley and Sons, New York.Google Scholar
  41. 41.
    Yan, H., Luh, P.B., Guan, X. and Rogan, P.M. (1993) Scheduling of Hydrothermal Power Systems. IEEE Transactions on Power Systems. Vol. 8, No. 3, pp. 1135–1365.CrossRefGoogle Scholar
  42. 42.
    Zhuang, F and Galiana, F.D. (1988) Toward a More Rigorous and Practical Unit Commitment by Lagrangian Relaxation. IEEE Transactions on Power Systems. Vol. 3, No. 2, pp. 763–773.CrossRefGoogle Scholar
  43. 43.
    Alvarez, M., Cuevas, C.M., Escudero, L.F., de la Fuente, J.L., García, C. and Prieto, F.J. (1994) Network Planning under Uncertainty with an Application to Hydropower Generation. TOP. Vol. 2, No. 1, pp. 25–58.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • A. J. Conejo
    • 1
  • J. M. Arroyo
    • 1
  • N. Jiménez Redondo
    • 2
  • F. J. Prieto
    • 3
  1. 1.Univ. De Castilla — La ManchaCiudad RealSpain
  2. 2.Univ. De MálagaMálagaSpain
  3. 3.Univ. Carlos IiiMadridSpain

Personalised recommendations