Skip to main content

Spontaneous Pattern Formation in Metallic and Ceramic Materials

  • Chapter

Abstract

This contribution focuses upon the predictable aspects of metallurgical microstructures which by inverse logic have a bearing on similar forms from the mainly ceramic geocosmological record. Among the common forms are needles, plates, cells, and dendrites, together with lamellar, wavy, multidisperse and filamentary arrays. Apart from the usual disparity of time and spatial scales, the main distinctions arise from the stronger directionality of bonds in the case of ceramics, with concomitant stronger anisotropy of surface tension and an attendant facetting propensity. In common are the facts that both liquid-solid and solid-solid transformations with control by diffusion or by chemical reaction or both may be involved. The inversion of the logic comes from the fact that metallurgists try to predict micrographic scale from given thermal conditions, whereas geologists would like, among other things, to estimate historical thermal conditions from observed patterning scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S.M. and Cahn J.W., 1979, A microscopic theory for antiphase boundary motion, Acta Metallurgica 27, 1085–1095.

    Article  Google Scholar 

  • Annett, J.F. and Banavar, J.R., 1992, Critical dynamics, spinodal decomposition and conservation laws, Physical Review Letters 68, 2941–2943.

    Article  Google Scholar 

  • Binder, K., 1991, Spinodal decomposition, in R.W. Cahn, P. Haasen and E.J. Kramer (eds.),Materials Science and Technology, VCH, Weinhein, Germany, pp. 405–471.

    Google Scholar 

  • Boettinger, W.J., Wheeler, A.A., Murray, B.T., McFadden, G.B. and Kobayashi, R., 1992, A phase-field, diffuse interface solidification model for pure metals and alloys, in S.P. Marsh and C. Pandé (eds.), Modelling and Coarsening and Grain Growth, The Metallurgical Society, Warrendale, PA, pp. 27–33.

    Google Scholar 

  • Boole, G., 1967, The Laws of Thought, Dover Publications, New York.

    Google Scholar 

  • Bouchard, D. and Kirkaldy, J.S., 1997, Prediction of dendrite arm spacing in unsteady and steady state heat flow, Metallurgical and Materials Transactions 28B, 651–663.

    Google Scholar 

  • Brechet, Y. and Kirkaldy, J.S., 1992, Parabolic periodic solution of precipitation modified ternary diffusion equations, Canadian Journal of Physics 70, 193–198.

    Article  Google Scholar 

  • Buchmayr, B. and Kirkaldy, J. S., 1990, Modelling of the temperature field, transformation behavior and mechanical response of alloy steels on cooling, Journal of Heat Treating 8, 127–136.

    Article  Google Scholar 

  • Cahn, J.W., 1961, On spinodal decomposition, Acta Metallurgica 9, 795–801.

    Article  Google Scholar 

  • Cole, G.S., 1963, Cellular solidification, Ph.D. Dissertation, University of Toronto.

    Google Scholar 

  • Cross, M.C. and Hohenburg, P.C., 1993, Pattern formation outside of equilibrium, Reviews of Modern Physics 65, 851–1112.

    Article  Google Scholar 

  • Fan, D. and Chen, L.Q., 1996, Microstructure evolution and grain growth kinetics in a two-phase solid, in L.Q. Chen et al. (eds.), Mathematics of Microstructure Evolution, TMS-SIAM, Warrendale, PA, pp. 215–223.

    Google Scholar 

  • Ginzburg, V.L. and Landau, L.D., 1950, On the theory of superconductivity, Soviet Physics JETP 20, 1064–1073.

    Google Scholar 

  • Goryachev, S.B., 1994, Theory of spinodal decomposition, Physical Review Letters 72, 1850–1853.

    Article  Google Scholar 

  • Hashiguchi, K. and Kirkaldy, J.S., 1984, Pearlite growth by combined volume and phase boundary diffusion, Scandinavian Journal of Metallurgy 13, 240–248.

    Google Scholar 

  • Hillert, M., 1957, The role of interfacial energy during solid state phase transformations, Jernkontorets Annalen 141, 757–789.

    Google Scholar 

  • Hillert, M., 1961, A solid solution model for inhomogeneous systems, Acta Metallurgica 9, 525–535.

    Article  Google Scholar 

  • Hillert, M., 1968, Transformations in Steel, Institute of Metals Monograph and Report, Series 33, pp. 231–247.

    Google Scholar 

  • Huberman, B.A. and Hogg, T., 1984, Adaptation and self repair in parallel computing structures, Physical Review Letters 52, 1048–1051.

    Article  Google Scholar 

  • Hunt, J.D. and Jackson, K.A., 1966, Binary eutectic solidification, Metallurgical Transactions 236, 843–852.

    Google Scholar 

  • Jablczynski, K. and Kobryner, S., 1926, Scaling in the Liesgang Phenomena, Bulletin Soc. Chem. 39, 383–387.

    Google Scholar 

  • Jackson, K.A., 1967, Eutectic Solidification, Bell Telephone System (Educational film), Bell Laboratories.

    Google Scholar 

  • Kahlweit, M., 1963, Über der Alterung von Niederschagen durch Umlösung (Ostwald Reifung), Zeitschrift für Physikalische Chemie 36, 292–298.

    Article  Google Scholar 

  • Kirkaldy, J.S., 1985, Pattern formation, logistics and maximum path probability, Physical Review A31, 1781–1797.

    Google Scholar 

  • Kirkaldy, J.S., 1989, Wavenumber systematics in first order phase transitions, Scripta Metallurgica 23, 2019–2024.

    Article  Google Scholar 

  • Kirkaldy, J.S., 1992, Spontaneous evolution of spatiotemporal patterns in materials, Reports on Progress in Physics 35, 723–795.

    Article  Google Scholar 

  • Kirkaldy, J.S., 1993, Spontaneous evolution of microstructure in materials, Metallurgical Transactions 24A, 1689–1721.

    Google Scholar 

  • Kirkaldy, J.S., 1995, The symmetry 4-group and function of quasiparticles in pattern formation, Scripta Materialia 33, 259–265.

    Article  Google Scholar 

  • Kirkaldy, J.S., 1997a, Tracer-based representation of the mobility in a diffuse antiphase boundary, Journal of Applied Physics 83, 5773–5778.

    Article  Google Scholar 

  • Kirkaldy, J.S., 1997b, Ginzburg-Landau development of the Ostwald-Ripening problem, Acta Materialia, submitted.

    Google Scholar 

  • Kirkaldy, J.S. and Sharma, R.C., 1980, Stability principles for lamellar eutectoid(ic) reactions, Acta Metallurgica 28, 1009–1021.

    Article  Google Scholar 

  • Kirkaldy, J.S. and Venugopalan, D., 1989, Pattern selection relations for deep-rooted binary alloy cells, Scripta Metallurgica 23, 1603–1608.

    Article  Google Scholar 

  • Klein, M.J., 1958, A note on the domain of validity of the principle of minimum entropy production, in I. Prigogine (ed.), Transport Processes in Statistical Mechanics, Interscience, New York, pp. 1–8.

    Google Scholar 

  • Kobayashi, R., 1994, A numerical approach to three-dimensional dendritic solidification, Experimental Mathematics 3, 59–81.

    Article  Google Scholar 

  • Landau, L.D., 1937, On the theory of phase transitions JETP 7, 19–85, 627–701.

    Google Scholar 

  • Landau, L.D. and Khalatnikov, I.M., 1954, On the anomolous absorption of sound near a second order transition point, Dokl. Akad. Nauk. SSSR 96, 469–476.

    Google Scholar 

  • Langer, J.S., 1989, Instabilities and pattern formation in crystal growth, Science 243, 1150–1156.

    Article  Google Scholar 

  • Levin, H.L., 1990, Contemporary Physical Geology, Saunders College Publishing, PA, pp. 94, 142, 143, 363.

    Google Scholar 

  • Lifshitz, I.M., 1962, Kinetics of ordering during second order phase transitions, Soviet Physics JETP 15, 939–942.

    Google Scholar 

  • Lifshitz, I.M. and Slyozov, Y.Y., 1961, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids 19, 1341–1350.

    Article  Google Scholar 

  • Liu, L.X. and Kirkaldy, J.S.,1995, Thin film forced velocity solidification — I. Experiments, Acta Metallurgica and Materialia 43, 2891–2904.

    Article  Google Scholar 

  • McBirney, A.A. and Noyes, R.M., 1979, Skaergaard crystallization and layering, Journal of Petrology 20, 487–554.

    Article  Google Scholar 

  • Metui, H., Kitahara, K. and Ross, J., 1976, Stochastic theory of the kinetics of phase transformations, Journal of Chemical Physics 65, 292–299; 393–396.

    Article  Google Scholar 

  • Mullins, W.W., 1986, The statistical self-similar hypothesis in grain growth and particle coarsening, Journal of Applied Physics 59, 1341–1349.

    Article  Google Scholar 

  • Mullins, W.W., 1991, The statistical particle growth law in self-similar coarsening, Acta Metallurgica et Materialia 39, 2081–2090.

    Article  Google Scholar 

  • Onsager, L., 1931, Reciprocal relations in irreversible processes, Physical Review 37, 405–426

    Article  Google Scholar 

  • Onsager, L., 1931, Reciprocal relations in irreversible processes, Physical Review 38, 2265–2279.

    Article  Google Scholar 

  • Onsager, L., 1949, Statistical hydrodynamics, Nuovo Cimento 6 (suppl.), 279–287.

    Article  Google Scholar 

  • Ortoleva, P., 1994, Geochemical Self-Organization, Oxford University Press, Oxford.

    Google Scholar 

  • Osinski, K., Vriend, A.W., Bastin, G.F. and van Loo, F.J.J., 1982, Periodic formation of FeSi bands in couples of Fe(15% Si)-Zn, Zeitschrift für Metallkunde 73, 258–261.

    Google Scholar 

  • Ostwald, W., 1897, Periodic precipitation, in Lehrbuch der Allgemeinen Chemie, Engleman, Leipzig, pp. 17–26.

    Google Scholar 

  • Puls, M.P. and Kirkaldy, J.S., 1972, The pearlite reaction, Metallurgical Transactions 3, 2777–2796.

    Article  Google Scholar 

  • Shapiro, J.M. and Kirkaldy, J.S., 1968, The kinetics of discontinuous precipitation in copper-indium alloys, Acta Metallurgica 16, 1239–1252.

    Article  Google Scholar 

  • Singh, N.B. and Glicksman, M.E., 1989, Determination of the mean solid-liquid interface energy of pivalic acid, Journal of Crystal Growth 98, 513–558.

    Google Scholar 

  • Symons, D.T.A., 1967, The magnetic and petrologic properties of a basalt column, Geophysical Journal of the Royal Astronomical Society 12, 473–490.

    Article  Google Scholar 

  • Tank, D.W. and Hopfield, J.J., 1987, Collective computation in neuron-like circuits, Scientific American 257, 104–114.

    Article  Google Scholar 

  • Tiller, W.A., Jackson, K.A., Rutter, J.S. and Chalmers, B., 1953, The redistribution of solute atoms during solidification of mnetals, Acta Metallurgica 1, 428–437.

    Article  Google Scholar 

  • Townsend, R.D. and Kirkaldy, J.S., 1968, The Widmanstätten reaction, Transactions of ASM 61, 605–617.

    Google Scholar 

  • Turnbull, D., 1955, Theory of cellular precipitation, Acta Metallurgica 3, 55–63.

    Article  Google Scholar 

  • Van Rooijen, V.A., Van Royen, E.W., Vrijen, J. and Radelaar, S., 1975, On Liesegang bands in internally oxidized AgCd based ternary alloys, Acta Metallurgica 23, 987–995.

    Article  Google Scholar 

  • Van Santen, R.A., 1984, The Ostwald step rule, Journal of Physical Chemistry 88, 5768–5769.

    Article  Google Scholar 

  • Van Santen, R.A., 1988, Comment on “Entropy production and the Ostwald step rule”, Journal of Physical Chemistry 92, 248.

    Article  Google Scholar 

  • Vilella, R., Reproduced by Darken, L.S. and Fisher, R.M., 1962, Some observations on the growth of pearlite, in V.F. Zackay and H.I. Aaronson (eds.), Decomposition of Austenite by Diffusional Processes, Interscience, New York, p. 253.

    Google Scholar 

  • Voorhees, P.W. and Schaeffer, R.S., 1987, In situ observation of particle motion and diffusion interaction during coarsening, Acta Metallurgica 35, 327–339.

    Article  Google Scholar 

  • Wagner, C., 1961, The growth of dispersed precipitates in solution, Zeitschrift für Electrochemie 65, 581–597.

    Google Scholar 

  • Wagner, R. and Kampmann, R., 1991, Homogeneous second phase precipitation, in R.W. Cahn, P. Haasen and E.J. Kramer (eds.), Materials Science and Technology, VCH, Weinhein, Germany, pp. 213–303.

    Google Scholar 

  • Whittaker, E.T., 1952, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, Cambridge, pp. 248–249.

    Google Scholar 

  • Wilson, K.G., 1979, Problems in physics with many scales of length, Scientific American 241, 158–179.

    Article  Google Scholar 

  • Woese, C.R., 1967, The Genetic Code, Harper and Row, New York.

    Google Scholar 

  • Wright, F.L., 1953, The Future of Architecture, Mentor Books, New York, pp. 41ff.

    Google Scholar 

  • Zener, C., 1946, Phase transformations in steel, Transactions of the Metallurgical Society, AIME 167, 550–559.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirkaldy, J.S. (1999). Spontaneous Pattern Formation in Metallic and Ceramic Materials. In: Jamtveit, B., Meakin, P. (eds) Growth, Dissolution and Pattern Formation in Geosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9179-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9179-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4030-5

  • Online ISBN: 978-94-015-9179-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics