Skip to main content

Evolution of Pore Structure and Permeability of Rocks in Laboratory Experiments

  • Chapter
Growth, Dissolution and Pattern Formation in Geosystems

Abstract

Rock strength is profoundly affected by pore fluids through diverse mechanical and chemical interactions (Walder and Nur, 1984; Carter et al., 1990). Conversely, deformation can easily result in large changes of the pore structure (Paterson, 1978; Wong, 1990). Because transport properties of rocks, including permeability and electrical resistivity, are directly determined by the pore structure (Walsh, 1965; Simmons and Richter, 1976; Gangi, 1979; Shankland et al., 1981; Heard and Page, 1982), those properties can also be substantially altered by deformation. As a direct consequence of the relationships among the physical state of pore fluids, fluid transport, and mechanical deformation, rocks may exhibit complex, time-dependent mechanical and transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharonov, A., 1996, Solid-fluid interactions in porous media: Processes that form rocks, Ph.D. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Aharonov, A., Rothman, D.H. and Thompson, A.H., 1997, Transport properties and diagenesis in sedimentary rocks: The role of microscale geometry, Geology 25, 547.

    Article  Google Scholar 

  • Arzt, E., Ashby, M.F. and Easterling, K.E. 1983, Practical applications of hot-isostatic pressing diagrams: Four case studies, Metallurgical Transactions A 14, 211–221.

    Article  Google Scholar 

  • Atkinson, B.K., 1984, Sub-critical crack growth in geological materials, Journal of Geophysical Research 89, 4077–4113.

    Article  Google Scholar 

  • Auzerais, F.M., Dunsmuir, J., FerrĂ©ol, B.B., Martys, N., Olson, J., Ramakrishnan, T.S., Rothman, D.H. and Schwartz, L.M., 1996, Transport in sandstone: A study based on three-dimensional microtomography, Geophysical Research Letters 23, 705–708.

    Article  Google Scholar 

  • Beere, W., 1975, A unifying theory of the stability of penetration liquid phases and sintering pores, Acta Metallurgica 23, 131–138.

    Article  Google Scholar 

  • BernabĂ©, Y., 1995, The transport properties of networks of cracks and pores, Journal Geophysical Research 100, 4231–4241.

    Article  Google Scholar 

  • BernabĂ©, Y., 1996, Self-organized fluid flow through heterogeneous networks, Geophysical Research Letters 23, 3039–3042.

    Article  Google Scholar 

  • BernabĂ©, Y., Brace, W.F. and Evans, B., 1982, Permeability, porosity, and pore geometry of hot-pressed calcite, Mechanics of Materials 1, 173–183.

    Article  Google Scholar 

  • Berryman, J.G. and Blair, S.C., 1987, Kozeny-Carman relations and image processing methods for estimating Darcy’s constant, Journal of Applied Physics 62, 2221–2228.

    Article  Google Scholar 

  • Blakely, J.M., 1973, Introduction to the Properties of Crystal Surfaces, Pergamon Press, Oxford.

    Google Scholar 

  • Blanpied, M.L., Lockner, D.A. and Byerlee, J.D., 1992, An earthquake mechanism based on rapid sealing of faults, Nature 358, 574–576.

    Article  Google Scholar 

  • Bodnar, R.J. and Sterner, S.M., 1985, Synthetic fluid inclusions in natural quartz, II. Application to PVT studies, Geochimica et Cosmochimica Acta 49, 1855–1859.

    Article  Google Scholar 

  • Bodnar, R.J. and Sterner, S.M., 1987, Synthetic fluid inclusions, in G.C. Ulmer and H.L. Barnes (eds.), Hydrothermal Experimental Techniques, John Wiley, New York, pp. 423–457.

    Google Scholar 

  • BourbiĂ©, T. and Zinszner, B., 1985, Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone, Journal of Geophysical Research 90, 11524–11532.

    Article  Google Scholar 

  • Brantley, S.L. and Voight, D., 1989, Fluids in metamorphic rocks: Effects of fluid chemistry on quartz microcrack healing, in D.L. Miles (ed.), Water-Rock Interaction WRI-6: Proceedings of 6th International Symposium on Water Rock Interaction, Malvern, A.A. Balkema, Rotterdam, pp. 113–116.

    Google Scholar 

  • Brantley, S.L., Evans, B., Hickman, S.H. and Crerar, D.A.,1989, Healing of microcracks in quartz: Implication for fluid flow, Geology 18, 136–139.

    Article  Google Scholar 

  • Brown, S.R., 1987, Fluid flow through rock joints: The effect of surface roughness, Journal of Geophysical Research 92, 1337–1347.

    Article  Google Scholar 

  • Brown, S.R. and Scholz, C.H., 1986, Closure of rock joints, Journal of Geophysical Research 91, 4939–4948.

    Article  Google Scholar 

  • Bulau, J.R., Waff, H.S. and Tyburczy, J.A., 1979, Mechanical and thermodynamic constraints on fluid distribution in partial melts, Journal of Geophysical Research 84, 6102–6108.

    Article  Google Scholar 

  • Byerlee, J.D., 1990, Friction, overpressure and fault normal compression, Geophysical Research Letters 17, 2109–2112.

    Article  Google Scholar 

  • Carlson, R.L. and Gangi, A.F., 1985, Effect of cracks on the pressure dependence of P wave velocities in crystalline rocks, Journal of Geophysical Research 90, 8675–8684.

    Article  Google Scholar 

  • Carlson, S.R., Wu, M. and Wang, H.F., 1990, Micromechanical modeling of thermal cracking in granite, in A. Duba, W.B. Durham, J.W. Handin, H. Wang (eds.) The Brittle-Ductile Transition in Rocks, The Heard Volume, Geophys. Monogr. Ser., Vol. 56, AGU, Washington, DC, pp. 37–48.

    Chapter  Google Scholar 

  • Carter, N.L., Kronenberg, A.K., Ross, J.V. and Wiltschko, D.V., 1990, Controls of fluids on deformation of rocks, in R.J. Knipe and E.H. Rutter (eds.), Deformation Mechanisms, Rheology and Tectonics, Geological Society Special Publication No. 54.

    Google Scholar 

  • David, C., GuĂ©guen, Y. and Pampoukis, G., 1990, Effective medium theory and network theory applied to the transport properties of rock, Journal of Geophysical Research 95, 6993–7006.

    Article  Google Scholar 

  • David, C., Wong, T.-F., Zhu, W. and Zhang, J., 1994, Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics 143, 425–426.

    Article  Google Scholar 

  • De Meer, S. and Spiers, C.J., 1995, Creep of wet gypsum aggregates under hydrostatic loading conditions, Tectonophysics 245, 171–183.

    Article  Google Scholar 

  • Doyen, P.M., 1988, Permeability, conductivity, and pore geometry of sandstone, Journal of Geophysical Research 93, 7729–7740.

    Article  Google Scholar 

  • Dullien, F.A.L., 1979, Porous Media, Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  • Elliot, D., 1973, Diffusion flow law in metamorphic rocks, Bulletin of the Geological Society of America 84, 2645–2664.

    Article  Google Scholar 

  • Engelder, T., 1979, Mechanisms for strain within the Upper Devonian clastic sequence of the Appalachian plateau, Western New York, American Journal of Science 279, 527–542.

    Article  Google Scholar 

  • Engelder, T., 1982, A natural example of the simultaneous operation of free-face dissolution and pressure solution, Geochimica et Cosmochimica Acta 46, 69–74.

    Article  Google Scholar 

  • Etheridge, M.A., Wall, V.J., Cox, S.F. and Vernon, R.H., 1984, High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms, Journal of Geophysical Research 89, 4344–4358.

    Article  Google Scholar 

  • Evans, A.G. and Charles, R.A., 1977, Strength recovery by diffusive crack healing, Acta Metallurgica 25, 919–927.

    Article  Google Scholar 

  • Evans, B., Fredrich, J. and Wong, T.-F., 1990, The brittle-ductile transition in rocks: Recent experimental and theoretical progress, in A.G. Duba, W.B. Durham, J.W. Handin, H. Wang (eds.), The Brittle-Ductile Transition in Rocks, The Heard Volume, Geophys. Monograph Ser., Vol. 56, AGU, Washington, DC, pp. 1–21.

    Chapter  Google Scholar 

  • Fertl, W.H., 1976, Abnormal Formation Pressures: Implications to Exploration, Drilling, and Production of Oil and Gas Resources, Development in Petroleum Science, Vol. 2, Elsevier, Amsterdam.

    Google Scholar 

  • Fischer, G.J., 1992, The determination of permeability and storage capacity: Pore pressure oscillation method, in B. Evans and T.-F. Wong (eds.), Fault Mechanics and Transport Properties in Rocks: A Festschrift in Honor of WF Brace, Academic Press, London, pp. 187–211.

    Chapter  Google Scholar 

  • Fischer, G.J. and Paterson, M.S., 1989, Dilatancy during rock deformation at high temperatures and pressures, Journal of Geophysical Research 94, 17607–17617.

    Article  Google Scholar 

  • Fischer, G.J. and Paterson, M.S., 1992, Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure, in B. Evans and T.-F. Wong (eds.), Fault Mechanics and Transport Properties in Rocks: A Festschrift in Honor of W.F. Brace, Academic Press, London, pp. 213–252.

    Chapter  Google Scholar 

  • Fischmeister, H.F. and Arzt, E., 1983, Densification of powders by particle deformation, Powder Metallurgy 26, 82–88.

    Google Scholar 

  • Fredrich, J.T. and Wong, T.-F., 1986, Micromechanics of thermally induced cracking in three crustal rocks, Journal of Geophysical Research 91, 12743–12764.

    Article  Google Scholar 

  • Fredrich, J.T., Evans, B. and Wong, T.-F., 1989, Micromechanics of the brittle to plastic transition in Carrara Marble, Journal of Geophysical Research 94, 4129–4145.

    Article  Google Scholar 

  • Fredrich, J.T., MenĂ©ndez, B. and Wong, T.-F., 1995, Imaging the pore structure of geomaterials, Science 268, 276–279.

    Article  Google Scholar 

  • Fyfe, W.S., Price, N.J. and Thompson, A.B., 1978, Fluids in the Earth’s Crust, Developments in Geochemistry, Vol. 1, Elsevier Scientific, New York

    Google Scholar 

  • Gangi, A.F., 1979, Variation of whole and fractured porous rock permeability with confining pressure, International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts 15, 249–257.

    Article  Google Scholar 

  • GuĂ©guen, Y. and Dienes, J., 1989, Transport properties of rocks from statistics and percolation, Math. Geol. 21, 1–13.

    Article  Google Scholar 

  • GuĂ©guen, Y., David, C. and Darot, M., 1986, Models and time constants for permeability evolution, Geophysical Research Letters 13(5), 460–463.

    Article  Google Scholar 

  • Harmer, M.P., 1990, Hot-pressing: Technology and theory, in R.J. Brook (ed.), Advanced Ceramic Materials, MIT Press, Cambridge, MA, pp. 222–225.

    Google Scholar 

  • Heard, H.C. and Page, L., 1982, Elastic moduli, thermal expansion and inferred permeability of two granites to 350° C and 55 MPa, Journal of Geophysical Research 87, 9340–9348.

    Article  Google Scholar 

  • Helle, A.S., Easterling, K.E. and Ashby, M.F., 1985, Mechanisms of hot-isostatic pressing, Acta Metallurgica 31, 2163–2174.

    Article  Google Scholar 

  • Hickman, S.H. and Evans, B., 1987, Influence of geometry on crack healing rate in calcite, Phys. Chem. Minerals 15, 91–102.

    Article  Google Scholar 

  • Hickman, S.H. and Evans, B., 1992, Growth of grain contacts in halite by solution-transfer: Implications for diagenesis, lithification and strength recovery, in B. Evans and T.-F. Wong (eds.), Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor of W.F. Brace, Academic Press, London, pp. 253–280.

    Chapter  Google Scholar 

  • Holness, M.B., 1992, Equilibrium dihedral angles in the system quartz-0O2-H2O-NaCl at 800°C and 1–15 kbar: The effects of pressure and fluid composition on the permeability of quartzites, Earth Planet. Sci. Lett. 114, 171–184.

    Article  Google Scholar 

  • Holness, M.B. and Graham, C.M., 1995, P-T- X effects on equilibrium carbonate-H2 O-CO2-NaC1 dihedral angles: Constraints on carbonate permeability and the role of deformation during fluid infiltration, Cont. Mineral. Petrol. 119, 301–313.

    Article  Google Scholar 

  • Houseknecht, D.W., 1984, Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone, J. Sediment. Petrol. 54, 348–361.

    Google Scholar 

  • Johnson, D.L. and Schwartz, L.M. 1989, Unified theory of geometrical effects in transport properties of porous media, in Trans. SPWLA 30th. Ann. Logging Symp., paper E, pp. 1–25.

    Google Scholar 

  • Katz, A.J. and Thompson, A.H., 1986, Quantitative prediction of permeability in porous rock, Physical Reviews, B 34, 8179–8181.

    Article  Google Scholar 

  • King, P.R., 1989, The use of renormalization for calculating effective permeability, Transport in Porous Media 4, 37–58.

    Article  Google Scholar 

  • Kranz, R.L. and Blacic, J.D., 1984, Permeability changes during time-dependent deformation of silicate rock, Geophysical Research Letters 11, 975–978.

    Article  Google Scholar 

  • Kranz, R.L., Harris, W.J. and Carter, N.L., 1982, Static fatigue of granite at 200° C, Geophysical Research Letters 9, 1–4.

    Article  Google Scholar 

  • Lambe, T.W. and Whitman, R.V., 1969, Soil Mechanics, John Wiley, New York, 553 pp.

    Google Scholar 

  • Laporte, D. and Watson, E.B., 1991, Direct observation of near-equilibrium pore geometry in synthetic quartzites at 600–800° C and 2–10.5 kbar, Journal of Geophysical Research 99, 873–878.

    Google Scholar 

  • Lee, V.W., Mackwell, S.J. and Brantley, S.L., 1991, The effect of fluid chemistry on wetting textures in novaculite, Journal of Geophysical Research 96, 10023–10037.

    Article  Google Scholar 

  • Lockner, D.A. and Evans, B., 1995, Densification of quartz powder and reduction in conductivity at 700° C, Journal of Geophysical Research 100, 13081–13092.

    Article  Google Scholar 

  • Long, J.C. and Witherspoon, P.A., 1985, The relationship of the degree of interconnection to permeability in fracture networks, Journal of Geophysical Research 90, 3087–3098.

    Article  Google Scholar 

  • Madden, T.R., 1983, Microcrack connectivity in rocks: A renormalization group approach to the critical phenomena of conduction and failure in crystalline rocks, Journal of Geophysical Research 88, 585–592.

    Article  Google Scholar 

  • Martin, R.J., 1972, Time-dependent crack growth in quartz and its application to the creep of rocks, Journal of Geophysical Research 77, 1406–1419.

    Article  Google Scholar 

  • Meyers, W.J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico, Sed. Pet. 44, 837–861.

    Google Scholar 

  • Mitra, G., Yonkee, W.A. and Gentry, D.J., 1984, Solution cleavage and its relationship to major structures in the Idaho-Utah-Wyoming thrust belt, Geology 12, 354–358.

    Article  Google Scholar 

  • Moore, D.E., Morrow, C.A. and Byerlee, J.D., 1983, Chemical reactions accompanying fluid flow through granite held in a temperature gradient, Geochimica et Cosmochimica Acta 47, 445–453.

    Article  Google Scholar 

  • Morrow, C., Lockner, D., Moore, D. and Byerlee, J., 1981, Permeability of granite in a temperature gradient, Journal of Geophysical Research 86, 3002–3008.

    Article  Google Scholar 

  • Mosher, S., 1980, Pressure solution deformation of conglomerates in shear zones, Narraganset Basin, Rhode Island, Journal of Structural Geology 2, 219–226.

    Article  Google Scholar 

  • Mosher, S., 1987, Pressure-solution deformation of Purgatory Conglomerate, Rhode Island (U.S.A.): Quantification of volume change, real strains and sedimentary shape factor, Journal of Structural Geology 9, 221–232.

    Article  Google Scholar 

  • Nekut, A., Connerney, J.E.P. and Kuckes, A.F., 1977, Deep crustal electrical conductivity: Evidence for water in the lower crust, Geophysical Research Letters 4, 239–242.

    Article  Google Scholar 

  • Nur, A. and Walder, J., 1992, Hydraulic pulses in the earth’s crust, in B. Evans and T.-F. Wong (eds.), Fault Mechanics and Transport Properties in Rocks: A Festschrift in Honor of W.F. Brace, Academic Press, London, CA, pp. 461–473.

    Chapter  Google Scholar 

  • Olgaard, D.L. and FitzGerald, J.D., 1993, Evolution of pore microstructure during healing of grain boundaries in synthetic calcite rocks, Contributions to Mineralogy and Petrology 115, 138–154.

    Article  Google Scholar 

  • Ortoleva, P.J., 1994, Geochemical Self-Organization, Oxford Monographs on Geology and Geophysics, Vol. 23, Oxford University Press, New York, 411 pp.

    Google Scholar 

  • Paterson, M.S., 1978, Experimental Rock Deformation, The Brittle Field, Springer-Verlag, Berlin, 254 pp.

    Google Scholar 

  • Paterson, M.S., 1993, The equivalent channel model for permeability and resistivity in fluid saturated rock — A reappraisal, Mech. Mat. 2, 345–352, 1983.

    Article  Google Scholar 

  • Paterson, M. S., 1995, A theory for granular flow accommodated by material transfer via an intergranular fluid, Tectonophysics 245, 135–151.

    Article  Google Scholar 

  • Peach, C.J. and Spiers, C.J., 1996, Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock, Tectonophysics 256, 101–128.

    Article  Google Scholar 

  • Pyrak-Nolte, L.J. and Cook, N.G.W., 1988, Fluid percolation through single fractures, Geophysical Research Letters 15, 1247–1250.

    Article  Google Scholar 

  • Ramsay, J.G., 1980, The crack-seal mechanism of rock deformation, Nature 284, 135–139.

    Article  Google Scholar 

  • Raj, R., 1982, Creep in polycrystalline aggregates by matter transport through a liquid phase, Journal of Geophysical Research 87, 4731–4739.

    Article  Google Scholar 

  • Rice, J.R., 1992, Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault, in B. Evans and T.-F. Wong (eds.), Fault Mechanics and Transport Properties in Rocks:, Academic Press, London, pp. 475–503.

    Chapter  Google Scholar 

  • Riley, G.N., Jr. and Kohlstedt, D.L. 1991, Kinetics of mnelt migration in upper mantle-type rocks, Earth Plan. Sci. Lett. 105, 500–521.

    Article  Google Scholar 

  • Roberts, J.N. and Schwartz, L.M., 1985, Grain consolidation and electrical conductivity in porous media, Physical Reviews, B 31, 5990–5997.

    Article  Google Scholar 

  • Roedder, E., 1984, Fluid Inclusions, Reviews in Mineralogy, Vol. 12, Mineralogical Society of America, Washington, DC, pp. 70–77.

    Google Scholar 

  • Ross, J.V. and Lewis, P.D., 1989, Brittle-ductile transition: Semi-brittle behavior, Tectonophysics 167, 75–79.

    Article  Google Scholar 

  • Rutter, E.H., 1986, On the nomenclature of mode of failure transitions in rocks, Tectonophysics 122, 381–387.

    Article  Google Scholar 

  • Sarkar, K. and Prosperetti, A., 1996, Effective boundary conditions for Stokes flow over a rough surface, Journal of Fluid Mechanics 316, 223–240.

    Article  Google Scholar 

  • Scholz, C.H., Leger, A. and Karner, S.L., 1995, Experimental diagenesis: Exploratory results, Geophysical Research Letters 22, 719–722.

    Article  Google Scholar 

  • Schwartz, L.M., Sen, P.N. and Johnson, D.L., 1989, Influence of rough surfaces on electrolytic conduction in porous media, Physical Reviews, B 40, 2450–2458.

    Article  Google Scholar 

  • Seeburger, D.A. and Nur, A., 1984, A pore space model for rock permeability and bulk modulus, Journal of Geophysical Research 89, 527–536.

    Article  Google Scholar 

  • Shankland, T.J., O’Connell, R.J. and Waff, H.S., 1981, Geophysical constraints on partial melt in the upper mantle, Reviews of Geophysics and Space Physics 19, 394–406.

    Article  Google Scholar 

  • Shelton, K.L. and Orville, P., 1980, Formation of synthetic fluid inclusions in natural quartz, American Mineralogist 65, 1233–1236.

    Google Scholar 

  • Shimada, M. and Cho, A., 1990, Two types of brittle fracture of silicate rocks under confining pressure and their implications in the Earth’s crust, Tectonophysics 175, 221–235.

    Article  Google Scholar 

  • Sibson, R.H., 1981, Fluid flow accompanying faulting: Field evidence and models, in D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction: An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, DC, pp. 593–604.

    Google Scholar 

  • Siddiqi, G., Evans, B., Dresen, G. and Freund, D., 1997, Effect of the brittle-ductile transition on transport properties of rock, Journal of Geophysical Research 102, 14765–14778.

    Google Scholar 

  • Simmons, G. and Richter, D., 1976, Microcracks in rocks, in R.G.J. Strens (ed.), The Physics and Chemistry of Minerals and Rocks, Wiley-Interscience, New York, pp. 105–137.

    Google Scholar 

  • Sleep, N.H. and Blanpied, M.L., 1992, Creep, compaction and the weak rheology of major faults, Nature 359, 687–692.

    Article  Google Scholar 

  • Smith, D.L. and Evans, B., 1984, Diffusional crack healing in quartz, Journal of Geophysical Research 89, 4125–4135.

    Article  Google Scholar 

  • Sprunt, E.S. and Nur, A., 1976, Reduction of porosity by pressure solution: Experimental verification, Geology 4, 463–466.

    Article  Google Scholar 

  • Sprunt, E.S. and Nur, A., 1977a, Destruction of porosity through pressure solution, Geophysics 42, 726–741.

    Article  Google Scholar 

  • Sprunt, E.S. and Nur, A., 1977b, Experimental study of the effects of stress on solution rate, Journal of Geophysical Research 82, 3013–3022.

    Article  Google Scholar 

  • Tada, R. and Siever, R., 1989, Pressure solution during diagenesis, Ann. Rev. Earth Planet. Sci. 17, 89–118.

    Article  Google Scholar 

  • Thompson, A.H., 1991, Fractals in rock physics, Ann. Rev. Earth Planet. Sci. 19, 237–262.

    Article  Google Scholar 

  • Tsang, Y.W. and Witherspoon, P.A., 1981, Hydromechanical behavior of a deformable rock fracture subject to normal stress, Journal of Geophysical Research 86, 9287–9298.

    Article  Google Scholar 

  • Tullis, J.A. and Yund, RA, 1992, The brittle-ductile transition in feldspar aggregates: An experimental study, in B. Evans and T.-F. Wong (eds.), Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor of W.F. Brace, Academic Press, London, pp. 89–117.

    Chapter  Google Scholar 

  • Vaughan, P.J., Moore, D.E., Morrow, C.A. and Byerlee, J.D., 1986, Role of cracks in progressive permeability reduction during flow of heated aqueous fluids through granite, Journal of Geophysical Research 91, 7517–7530.

    Article  Google Scholar 

  • Walder, J. and Nur, A., 1984, Porosity reduction and crustal pore pressure development, Journal of Geophysical Research 89, 11539–11548.

    Article  Google Scholar 

  • Walsh, J.B., 1965, The effects of cracks on the compressibility of rock, Journal of Geophysical Research 70, 381–389.

    Article  Google Scholar 

  • Walsh, J.B., 1981, The effect of pore pressure and confining pressure on fracture permeability, International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts 18, 429–435.

    Article  Google Scholar 

  • Walsh, J.B. and Brace, W.F., 1984, The effect of pressure on porosity and the transport properties of rock, Journal of Geophysical Research 89, 9425–9431.

    Article  Google Scholar 

  • Walsh, J.B. and Grosenbaugh, M.A., 1979, A new model for analyzing the effect of fractures on compressibility, Journal of Geophysical Research 84, 3532–3536.

    Article  Google Scholar 

  • Walther, J.V. and Orville, P.M., Volatile production and transport in regional metamorphism, Contributions to Mineralogy and Petrology 79, 252–257.

    Google Scholar 

  • Wang, H.F., Boner, B.P., Carlson, S.R., Kowallis, B.J. and Heard, H.C., 1989, Thermal stress cracking in granite, Journal of Geophysical Research 94, 1745–1758.

    Article  Google Scholar 

  • Watson, E.B. and Brenan, J.M., 1987, Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation, Earth Plan. Sci. Lett. 85, 497–515.

    Article  Google Scholar 

  • Watson, E.B., Brenan, J.M. and Baker, D.R., 1991, Distribution of fluids in the continental lithosphere mantle, in M.A. Menzies (ed.), The Continental Lithospheric Mantle, Oxford University Press, Oxford, pp. 111–125.

    Google Scholar 

  • Wong, P.-Z., Koplik, J. and Tomanic, J.P., 1984, Conductivity and permeability of rocks, Physical Reviews, B 30, 6606–6614.

    Article  Google Scholar 

  • Wong, T.-F., 1990, Mechanical compaction and the brittle-ductile transition in porous sandstones, in R.J. Knipe and E.H. Rutter (eds.), Deformation Mechanisms, Rheology and Tectonics, Geological Society Special Publication No. 54, Geological Society, London, pp. 111–122.

    Google Scholar 

  • Wong, T.-F., Fredrich, J.T. and Gwanmesia, G.D., 1989, Crack aperture statistics and pore space fractal geometry of Westerly granite and Rutland quartzite: Implications for elastic contact model of rock compressibility, Journal of Geophysical Research 94, 10267–10278.

    Article  Google Scholar 

  • Wong, T.-F., David, C. and Zhu, W-L., 1997, The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation, Journal of Geophysical Research 102, 3009–3026.

    Article  Google Scholar 

  • Zeuch, D.H., 1990, Isostatic hot-pressing mechanism maps for pure and natural sodium chloride — Applications to nuclear waste isolation in bedded and domal salt formations, International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts 27, 505–524.

    Article  Google Scholar 

  • Zhang, J., Wong, T.-F. and Davis, D.M., 1990, Micromechanics of pressure-induced grain crushing in porous rocks, Journal of Geophysical Research 95, 341–352.

    Article  Google Scholar 

  • Zhang, S. and Tullis, T.E., 1998, The effect of fault slip on permeability and its anisotropy in an artificial quartz gouge, in John Logan Volume, AGU Monograph, Washington, DC, in press.

    Google Scholar 

  • Zhang, S., Cox, S.F. and Paterson, M.S.,1994, Porosity and permeability evolution during hot isostatic pressing of calcite aggregates, Journal of Geophysical Research 99, 15741–15760.

    Article  Google Scholar 

  • Zhu, W., 1996, Effects of stress, cementation and hot pressing on permeability: Experimental observations and network modeling, Ph.D. Thesis, State University New York, Stony Brook.

    Google Scholar 

  • Zhu, W. and Wong, T.-F., 1997, The transition from brittle faulting to cataclastic flow in porous sandstones: Permeability evolution, Journal of Geophysical Research 102, 3027–3042.

    Article  Google Scholar 

  • Zhu, W., David, D. and Wong, T.-F., 1995, Network modeling of permeability evolution during cementation and hot isostatic pressing, Journal of Geophysical Research 100, 15451–15464.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evans, B., Bernabé, Y., Zhu, W. (1999). Evolution of Pore Structure and Permeability of Rocks in Laboratory Experiments. In: Jamtveit, B., Meakin, P. (eds) Growth, Dissolution and Pattern Formation in Geosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9179-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9179-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4030-5

  • Online ISBN: 978-94-015-9179-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics