Skip to main content

Biogenic Silica: A Model of Amorphous Structure Control

  • Chapter
Growth, Dissolution and Pattern Formation in Geosystems

Abstract

Silicon is the second most abundant element in the Earth’s crust and in combination with oxygen the silicates form the largest and most abundant group of minerals. Many silicates are also formed in combination with other elements such as magnesium, aluminium, calcium and iron and as such form many of the minerals in our rocks and soils. Weathering processes over millions of years have also resulted in the occurrence of silica (silicon dioxide) in a variety of largely crystalline forms. The only naturally occurring amorphous silica mineral is opal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attard, G.S., Glyde, J.C. and Goltner, C.G., 1995, Liquid crystalline phases as templates for the synthesis of mesoporous silica, Nature 378(6555), 366–368.

    Article  Google Scholar 

  • Berman, A., Addadi, L. and Weiner, S., 1988, Interaction of sea urchin skeleton macromolecules with growing calcite crystals — A study of intracrystalline proteins, Nature 331, 546–548.

    Article  Google Scholar 

  • Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T., Weiner, S. and Addadi, L., 1993, Biological control of crystal texture — A widespread strategy for adapting crystal properties to function, Science 259, 776–779.

    Article  Google Scholar 

  • Birchall, J.D., 1992, The interrelationship between silicon and aluminium in the biological effects of aluminium, in D.J. Chadwick and J. Whelan (eds.), Aluminium in Biology and Medicine, CIBA Foundation Symposium 169, John Wiley and Sons, Chichester, pp. 50–68.

    Google Scholar 

  • Harrison, C.C. (now Perry), Evidence for intramineral macromolecules containing protein from plant silicas, Journal of Phytochemistry 41, 37–42.

    Google Scholar 

  • Harrison, C.C. (now Perry) and Loton, N., 1995, Novel routes to designer silicas — Studies of the decomposition of (M+)2 [Si(C6H4O2)3]• xH2O, the importance of M+ identity on the kinetics of oligomerization and the structural characteristics of the silicas produced, Journal of the Chemical Society, Faraday Transactions 91, 4287–4297.

    Article  Google Scholar 

  • Harrison, C.C. (now Perry) and Lu, Y., 1994, In vivo and in vitro studies of polymer controlled silicification, Bulletin de l’Institut OcĂ©anographique, Monaco 14, 151–158.

    Google Scholar 

  • Hecky, R.E., Mopper, K., Kilham, P. and Degens, E.T., 1973, The amino acid and sugar composition of diatom cell walls, Marine Biology 19, 323–331.

    Article  Google Scholar 

  • Hodson, M.J., 1995, Ion localization and X-ray microanalysis, in Methods in Cell Biology, Vol. 49, Academic Press, New York, pp. 21–31.

    Chapter  Google Scholar 

  • Hodson, M.J. and Bell, 1986, The mineral relations of the lemma of Phalaris canariensis L., with particular reference to its silicified macrohairs, Israel Journal of Botany 35, 241–253.

    Google Scholar 

  • Hughes, N.P., Perry, C.C., Mann, S., Williams, R.J.P., Watt, F. and Grime, G.W., 1988, A scanning proton microprobe study of stinging emergences from the leaf of the common stinging nettle Urtica dioica L., Nuclear Instruments and Methods of Physics Research Series B 30 (3), 383–387.

    Article  Google Scholar 

  • Iler, R.K., 1981, The Chemistry of Silica, Plenum Press, New York.

    Google Scholar 

  • Kroger, N., Lehman, G., Rachel, R. and Sumper, M., 1997, Characterisation of a 200 kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall, European Journal of Biochemistry 250, 99–105.

    Article  Google Scholar 

  • Li, C.W. and Volcani, B.E., 1985a, Studies on the biochemistry and fine structure of silica shell formation in diatoms 8, morphogenesis of the cell wall in a centric diatom, ditylum brightwelli, Protoplasma 124, 10–29.

    Article  Google Scholar 

  • Li, C.W. and Volcani, B.E., 1985b, Studies on the biochemistry and fine structure of silica shell formation in diatoms 10, morphogenesis of the labiate processes in centric diatoms, Protoplasma 124, 147–156.

    Article  Google Scholar 

  • Mann, S. and Perry, C.C., 1986, Structural aspects of biogenic silica, in D. Evered and M. O’Connor (eds.), Silicon Biochemistry, CIBA Foundation Symposium 121, John Wiley and Sons, Chichester, pp. 40–58.

    Google Scholar 

  • Mann, S. and Perry, C.C., 1991, Solid state bioinorganic chemistry — Mechanisms and models of biomineralization, Advances in Inorganic Chemistry 36, 137–200.

    Article  Google Scholar 

  • Mann, S. and Williams, R.J.P., 1982, High resolution electron microscopy studies of the silica lorica in the choanoflagellate Stephanoeca diplocostata Ellis, Proceedings of the Royal Society London B216, 137–140.

    Article  Google Scholar 

  • Mann, S., Perry, C.C., Webb, J., Luke, B. and Williams, R.J.P., 1986, Structure, morphology, composition and organization of biogenic minerals in limpet teeth, Proceedings of the Royal Society of London B227, 179–190.

    Article  Google Scholar 

  • Mann, S., Perry, C.C., Williams, R.J.P., Fyfe, C.A., Gobbi, G.C. and Kennedy, G.J., 1983, The characterisation of the nature of silica in biological systems, Journal of the Chemical Society Chemical Communications, 168–170.

    Google Scholar 

  • Marsh III, A.R., Klein, S. and Vermeulen, T., Energy Research and Development Administration, Contact W 7405-Eng-48 Report LBL-4415, University of California, Lawrence Berkeley Laboratory [filed as a thesis by A.R. Marsh III].

    Google Scholar 

  • Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurthy, M., Petroff, P., Firouzi, A., Janicke, M. and Chmelka, B.F., 1993, The cooperative formation of inorganicorganic interfaces in the synthesis of silicate mesostructures, Science 261 (5126), 1299–1303.

    Article  Google Scholar 

  • Neumann, D., Lichtenberger, O., Schwieger, W. and zur Nieden, U., 1997a, Silicon storage in selected dicotyledons, Botanica Acta 110, 282–290.

    Google Scholar 

  • Neumann, D., zur Nieden, U., Schwieger, W., Leopold, I. and Lichtenberger, O., 1997b, Heavy metal tolerance of Minuartia verna, Journal of Plant Physiology 151, 101–108.

    Article  Google Scholar 

  • Perry, C.C.,1989, Biogenic silica, in S. Mann, J. Webb and R.J.P. Williams (eds.), Biomineralisation, Chemical and Biology Perspectives, VCH, Weinheim, Chapter 8, pp. 233–256.

    Google Scholar 

  • Perry, C.C. and Fraser, M.S., 1991, Silica deposition and ultrastructure in the cell-wall of Equisetum arvense, the importance of cell wall structures and flow control in biosilicification, Philosophical Transactions of the Royal Society of London B334, 149–157.

    Article  Google Scholar 

  • Perry, C.C. and Keeling-Tucker, T., 1998a, Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium, Journal of Inorganic Biochemistry, 2915–2921.

    Google Scholar 

  • Perry, C.C. and Keeling-Tucker, T., 1998b, Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts, Journal of the Chemical Society Chemical Communications, 2587–2588.

    Google Scholar 

  • Perry, C. C. and Lu, Y., 1992, Preparation of silicas from silicon complexes — Role of cellulose in polymerization and aggregation control, Journal of the Chemical Society, Faraday Transactions 88, 291–292.

    Article  Google Scholar 

  • Perry, C.C., Mann, S. and Williams, R.J.P., 1984a, Structural and analytical studies of silicified macrohairs from the lemma of the grass Phalaris canariensis, Proceedings of the Royal Society of London B222, 427–438.

    Article  Google Scholar 

  • Perry, C.C., Mann, S., Williams, R.J.P., Watt, F., Grimes, G.W. and Takacs, J., 1984b, A scanning proton microprobe study of macrohairs from the lemma of the grass Phalaris canariensis L., Proceedings of the Royal Society of London B222, 439–445.

    Article  Google Scholar 

  • Perry, C.C., Williams, R.J.P. and Fry, S.C., 1987, Cell wall biosynthesis during silicification of grass hairs, Journal of Plant Physiology 126, 437–448.

    Article  Google Scholar 

  • Stoeber, W., Fink, A. and Bohn, E.J., 1968, Controlled growth of monodisperse silica spheres in the micron size range, Colloid Interface Science 26, 6–69.

    Google Scholar 

  • Swift, D.M. and Wheeler, A.P., 1992, Evidence of an organic matrix from diatom biosilica, Journal of Phycology 28, 202–209.

    Article  Google Scholar 

  • Unger, K.K., 1979, Porous Silica, Its Properties and Use as a Support in Column Liquid Chromatography, Journal of Chromatography Library, Vol. 16, Elsevier, Amsterdam, 336 pp.

    Google Scholar 

  • Unger, K.K., 1994, Surface structure of amorphous and crystalline porous silicas — Status and prospects, in Adv. Chem. Ser., Vol. 234, pp. 165–181.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perry, C.C. (1999). Biogenic Silica: A Model of Amorphous Structure Control. In: Jamtveit, B., Meakin, P. (eds) Growth, Dissolution and Pattern Formation in Geosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9179-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9179-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4030-5

  • Online ISBN: 978-94-015-9179-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics