Skip to main content

Working Group 2 Report: Energy Input, Heating, and Solar Wind Acceleration in Coronal Holes

  • Chapter
Coronal Holes and Solar Wind Acceleration
  • 159 Accesses

Abstract

Theories and observations of energy input, heating and acceleration mechanisms in the low corona were presented and discussed. The main topics of discussion were large-scale solar wind simulations, theoretical heating mechanisms, observational constraints, confronting theory with observations and observational issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axford, W. I., and McKenzie, J. F.: 1998, ‘Acceleration of the high speed solar wind in coronal holes,’ this volume.

    Google Scholar 

  • Bromage, B., Clegg, J. R., and Thompson, B.: 1998, ‘Birth of a large low-latitude coronal hole,’ this volume.

    Google Scholar 

  • Cranmer, S. R., Field, G. B., and Kohl, J. L.: 1998, ‘The impact of ion-cyclotron wave dissipation on heating and accelerating the solar wind,’ this volume.

    Google Scholar 

  • Cranmer, S. R.,et al.: 1999a, ‘An empirical model of a polar coronal hole at solar minimum,’ Astrophys. J., 511, 481.

    Article  ADS  Google Scholar 

  • Cranmer, S. R., Field, G. B., and Kohl, J. L.: 1999b, ‘Spectroscopic constraints on models of ioncyclotron resonance heating in the polar solar corona and high speed solar wind,’ Astrophys. J., 518, in press.

    Google Scholar 

  • Cuseri, I., Mullan, D. J., Noci, G., and Poletto, G.: 1998, ‘Heating and acceleration of the solar wind via the gravity damping of Alfvén waves,’ this volume.

    Google Scholar 

  • Dammasch, I. E., Hassler, D. M., Curdt, W., and Wilhelm, K..: 1998, ‘Statistical analysis of EUV lines inside and outside of coronal holes,’ this volume.

    Google Scholar 

  • Davila, J., and Ofman, L.: 1998, ‘Fast solar wind acceleration and heating by nonlinear waves,’ this volume.

    Google Scholar 

  • Falconer, D. A., Moore, R. L., Porter, J. G., and Hathaway, D. H..: 1998, ‘Accumulation of small coronal bright points in the quiet magnetic network,’ this volume.

    Google Scholar 

  • Fludra, A., Del Zanna, G., and Bromage, B.: 1998, ‘Characteristics of polar coronal holes and their evolution from EUV observations,’ this volume.

    Google Scholar 

  • Guhathakurta, M., and Sittler, Jr. E.: 1998, ‘MHD model of the large-scale corona and the interplanetary medium from 1 R0 to 4 AU using SOHO and Ulysses observations,’ this volume.

    Google Scholar 

  • Hansteen, V. H.: 1998, ‘Time dependent heating of the corona and the solar wind,’ this volume.

    Google Scholar 

  • Jones, H. P.: 1998, ‘He I 1083 nm asymmetry and EUV line shifts in coronal holes’, this volume.

    Google Scholar 

  • Khabibrakhmanov, I. K., and Mullan, D. J.: 1994, ‘Gravitational damping of Alfvén waves in stellar atmospheres and winds,’ Astrophys. J., 430, 814–823.

    Article  ADS  Google Scholar 

  • Keppens, R., and Goedbloed, J. P.: 1998, ‘Numerical simulations of stellar winds,’ this volume.

    Google Scholar 

  • Kohl, J. L., Fineschi, S., Esser, R., Ciaravella, A., Cranmer, S. R., Gardner, L. D., Modigliani, A., Suleiman, R., and Noci, G..: 1998, ‘UVCS/SOHO observations of spectral line profiles in polar coronal holes,’ this volume.

    Google Scholar 

  • Lemaire, P., Bocchialini, K., Aletti, V., Hassler, D., and Wilhelm, K.: 1998, ‘Search for signatures of a coronal hole in transition region lines near disk center,’ this volume.

    Google Scholar 

  • Liewer, P. C., Velli, M., and Goldstein, B. E.: 1998, ‘Hybrid simulations of wave propagation and ion heating in the solar wind using a 1D expanding box model,’ this volume.

    Google Scholar 

  • Ofman, L., and Davila, J. M.: 1998, J Geophys. Res., 103, 23677.

    Article  ADS  Google Scholar 

  • Poedts, S., Rogava, A., and Mahajan, S. M.: 1998, ‘Velocity shear induced effects in the solar wind,’ this volume.

    Book  Google Scholar 

  • Poland, A. I., and Chae, J.: 1998, ‘Energetics of the lower transition region,’ this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hood, A.W. (1999). Working Group 2 Report: Energy Input, Heating, and Solar Wind Acceleration in Coronal Holes. In: Kohl, J.L., Cranmer, S.R. (eds) Coronal Holes and Solar Wind Acceleration. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9167-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9167-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5267-4

  • Online ISBN: 978-94-015-9167-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics