Skip to main content

Solar Wind Models from the Sun to 1 AU: Constraints by in Situ and Remote Sensing Measurements

  • Chapter
Coronal Holes and Solar Wind Acceleration

Abstract

There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alazraki, G., and Couturier, P.: 1971, Solar wind acceleration caused by the gradient of Alfvén wave pressure, Astron. Astrophys., 13, 380.

    ADS  Google Scholar 

  • Axford, W. I., and McKenzie, J. F.: 1992, The origin of high speed solar wind streams, in Solar Wind Seven, ed. E. Marsch and R. Schwenn, (Pergamon Press: Oxford, England), pp. 1–4.

    Chapter  Google Scholar 

  • Axford, W. I., and McKenzie, J. F.: 1997, The solar wind, in Cosmic Winds and the Heliosphere, ed. J. R. Jokipii, C. P. Sonett, and M. S. Giampapa, (University of Arizona Press: Tucson, USA), pp. 31–66.

    Google Scholar 

  • Banaszkiewicz, M., Axford, W. I., and McKenzie, J. F.: 1998, An analytic solar magnetic field model, Astron. Astrophys., 337, 940–944.

    ADS  Google Scholar 

  • Barnes, A., Gazis, P. R., and Phillips, J. L.: 1995, Constraints on solar wind acceleration mechanisms from Ulysses plasma observations: The first polar pass, Geophys. Res. Lett., 22, 3309–3311.

    Article  ADS  Google Scholar 

  • Belcher, J.: 1971, Alfvénic wave pressure and the solar wind, (Astrophys. J., 168, 509.

    Article  ADS  Google Scholar 

  • Bertaux, J.-L., Quemerais, E., and Lallement, R.: 1996, Observations of a sky Lyman α groove related to enhanced solar wind mass flux in the neutral sheet, Geophys. Res. Lett., 23, 3675–3678.

    Article  ADS  Google Scholar 

  • Bravo, S., Stewart, G. A., and Blanco-Cano, X.: 1998, The varying multipolar structure of the Sun’s magnetic field and the evolution of the solar magnetosphere through the solar cycle, Solar Phys., 179, 223–235.

    Article  ADS  Google Scholar 

  • Brekke, P., Hassler, D. M., and Wilhelm, K.: 1997, Doppler shifts in the quiet-Sun transition region and corona observed with SUMER on SOHO, Solar Phys., 175, 349–374.

    Article  ADS  Google Scholar 

  • Chae, J., Yun, H. S., and Poland, A. I.: 1998, Temperature dependence of UV line average Doppler shifts in the quiet Sun, Astrophys. J. Supp., 114, 151.

    Article  ADS  Google Scholar 

  • Corti, G., Poletto, G., Romoli, M., Michels, J., Kohl, J., and Noci, G.: 1997, Physical parameters in plume and interplume regions from UVCS observations, in Proceedings of the Fifth SOHO Workshop, ESA-SP-404, pp. 289–294.

    Google Scholar 

  • Cranmer, S. R., Kohl, J. L., Noci, G., et al.: 1999, An empirical model of a polar coronal hole at solar minimum, Astrophys. J., 511, 481.

    Article  ADS  Google Scholar 

  • David, C., Gabriel, A. H., Bely-Dubau, F., Fludra, A., Lemaire, P., and Wilhelm, K.: 1998, Measurement of the electron temperature gradient in solar coronal holes, Astron. Astrophys., 336, L90.

    ADS  Google Scholar 

  • Dusenbery, P. B., and Hollweg, J. V.: 1981, Ion-cyclotron heating and acceleration of solar wind minor ions, J. Geophys. Res., 86, 153–164.

    Article  ADS  Google Scholar 

  • Esser, R., Habbal, S. R., Coles, W. A., and Hollweg, J. V.: 1997, Hot protons in the inner corona and their effect on the flow properties of the solar wind, J. Geophys. Res., 102, 7063–7074.

    Article  ADS  Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Gary, S. P., and Montgomery, M. D.: 1976a, Electron parameter correlations in high-speed streams and heat flux instabilities, J. Geophys. Res., 81, 2377–2382.

    Article  ADS  Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Gary, S. P., Montgomery, M. D., and Zink, S. M.: 1976b, Evidence for the regulation of solar wind heat flux at 1 AU, J. Geophys. Res., 81, 5207–5211.

    Article  ADS  Google Scholar 

  • Fisher, R., and Guhathakurta, M.: 1995, Physical properties of polar coronal rays and holes as observed with the Spartan 201–01 coronagraph, Astrophys. J., 447, L139–L142.

    Article  ADS  Google Scholar 

  • Geiss, J., Gloeckler, G., and von Steiger, R.: 1995, Origin of the solar wind from composition data, Space Science Reviews, 72, 49–60.

    Article  ADS  Google Scholar 

  • Grall, R. R., Coles, W. A., Klinglesmith, M. T., Breen, A. R., Williams, P. J. S., Markkanen, J., and Esser, R.: 1996, Rapid acceleration of the polar solar wind, Letters of Nature, 379, 429–432.

    Article  Google Scholar 

  • Habbal, S. R., Woo, R., Fineschi, S., O’Neal, R., Kohl, J., Noci, G., and Korendyke, C.: 1997, Origins of the slow and the ubiquitous fast solar wind, Astrophys. J., 489, L103.

    Article  ADS  Google Scholar 

  • Hammer, R.: 1982a, Energy balance of stellar corona: I. Methods and examples, Astrophys. J., 259, 767–778.

    Article  ADS  Google Scholar 

  • Hammer, R.: 1982b, Energy balance of stellar corona: II. Effect of coronal heating, Astrophys. J., 259, 779–791.

    Article  ADS  Google Scholar 

  • Hansteen, V., and Leer, E.: 1995, Coronal heating, densities, and temperatures and solar wind acceleration, Journal of Geophys. Res., 100, 21577–21593.

    Article  ADS  Google Scholar 

  • Hansteen, V., Leer, E., and Holzer, T.: 1997, The role of helium in the outer solar atmosphere, Astrophys. J., 482, 498.

    Article  ADS  Google Scholar 

  • Hassler, D. M., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason, H. E., Vial, J.-C., and Wilhelm, K.: 1999, Solar coronal hole outflow velocities and the chromospheric network, Science, 283, 5040, 810–813.

    Article  ADS  Google Scholar 

  • Hartle, R. E., and Sturrock, P. A.: 1968, Two-fluid model of the solar wind, Astrophys. J., 151, 1155–1170.

    Article  ADS  Google Scholar 

  • Hefti, S., Grünwaldt, H., Ipavich, F. M., et al.: 1998, Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS, J. Geophys. Res., in press.

    Google Scholar 

  • Hoeksema, J. T.: 1995, The large-scale structure of the heliospheric current sheet during the Ulysses epoch, Space Science Reviews, 72, 137–148.

    Article  ADS  Google Scholar 

  • Hollweg, J. V.: 1978, Some physical processes in the solar wind, Rev. Geophys. Space Phys., 16, 689–720.

    Article  ADS  Google Scholar 

  • Hollweg, J. V.: 1986, Transition region, corona, and solar wind in coronal holes, J. Geophys. Res., 91, 4111–4125.

    Article  ADS  Google Scholar 

  • Hollweg, J. V., and Turner, J. M.: 1978, Acceleration of solar wind He++, 3, Effects of resonant and nonresonant intercations with transverse waves, J. Geophys. Res., 83, 97–113.

    Article  ADS  Google Scholar 

  • Hollweg, J. V., and Johnson, W.: 1986, Transition region, corona, and solar wind in coronal holes: Some two-fluid models, J. Geophys. Res., 93, 9547–9554.

    Article  ADS  Google Scholar 

  • Holzer, T. E., and Axford, W. I.: 1970, The theory of stellar winds and related flows, Ann. Rev. Astron. Astrophys., 8, 31–61.

    Article  ADS  Google Scholar 

  • Hu, Y. Q., Esser, R., and Habbal, S. R.: 1997, A fast solar wind model with anisotropic proton temperature, J. Geophys. Res., 102, 14661–14676.

    Article  ADS  Google Scholar 

  • Isenberg, P. A., and Hollweg, J. V.: 1983, On the preferential acceleration and heating of solar wind heavy ions, J. Geophys. Res., 88, 3923–3935.

    Article  ADS  Google Scholar 

  • Isenberg, P. A.: 1990, Investigations of a turbulence driven wave model, J. Geophys. Res., 95, 6437.

    Article  ADS  Google Scholar 

  • Jacques, S. A.: 1978, Solar wind models with Alfvén waves, Astrophys. J., 226, 632–649.

    Article  ADS  Google Scholar 

  • Ko, Y.-K., Fisk, L., Geiss, J., Gloeckler, G., and Guhathakurta, M.: 1997, An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole, Solar Phys., 171, 345–361.

    Article  ADS  Google Scholar 

  • Kohl, J. L., Noci, G., Anonucci, E., Tondello, G., Huber, M. C. E., Gardner, L. D., Nicolosi, P., Strachan, L., Fineschi, S., Raymond, J. C., Romoli, M., Spadaro, D., Panasyuk, A., Siegmund, O. H. W., Benna, C., Ciaravella, A., Cranmer, S. R., Giordano, S., Karovska, M., Martin, R., Michels, J., Modigliani, A., Naletto, G., Pernechele, C., Poletto, G., and Smith, P. L.: 1997, First results from the SOHO Ultraviolet Coronagraph Spectrometer, Solar Phys., 175, 613–644.

    Article  ADS  Google Scholar 

  • Kopp, R. A., and Holzer, T. E.: 1976, Dynamics of coronal hole regions, I. Steady polytropic flows with multiple critical points, Solar Phys., 49, 43–56.

    Article  ADS  Google Scholar 

  • Leer, E., and Axford, W. I.: 1972, A two fluid model with anisotropic proton temperature, Solar Phys., 23, 238–250.

    Article  ADS  Google Scholar 

  • Leer, E., Holzer, T. E., and Flå, T.: 1982, Acceleration of the solar wind, Space Sci. Rev., 33, 161–200.

    Article  ADS  Google Scholar 

  • Lemaire, P., Wilhelm, K., Curdt, W., Schühle, U., Marsch, E., Poland, A. I., Jordan, S. D., Thomas, R. J., Hassler, D. M., Vial, J. C., Kühne, M., Huber, M. C. E., Siegmund, O. H. W., Gabriel, A., Timothy, J. G., and Grewing, M.: 1997, First results of the SUMER telescope and spectrometer on SOHO, II. Imagery and data management, Solar Phys., 170, 105–122.

    Article  ADS  Google Scholar 

  • Li, X., Esser, R., and Habbal, S. R.: 1997, Influence of heavy ions on the high-speed solar wind, J. Geophys. Res., 102, 17419–17432.

    Article  ADS  Google Scholar 

  • Lie-Svendsen, O., Hansteen, V. H., and Leer, E.: 1997, Kinetic electrons in high-speed solar wind streams: Formation of high-energy tails, J. Geophys. Res., 102, 4701–4718.

    Article  ADS  Google Scholar 

  • Mariska, J. T.: 1992, The Solar Transition Region (Cambridge Astrophysics Series 23, Cambridge, University Press).

    Google Scholar 

  • Marsch, E., Goertz, C. K., and Richter, K.: 1982, Wave heating and acceleration of solar wind ions by cyclotron resonance, J. Geophys. Res., 87, 5030–5044.

    Article  ADS  Google Scholar 

  • Marsch, E., and Richter, A. K.: 1984, Helios observational constraints on solar wind expansion, J. Geophys. Res., 89, 6599–6612.

    Article  ADS  Google Scholar 

  • Marsch, E.: 1991a, Kinetic physics of the solar wind plasma, in Physics of the Inner Heliosphere, Vol. II, eds. R. Schwenn and E. Marsch, (Springer-Verlag: Heidelberg), pp. 45–133.

    Chapter  Google Scholar 

  • Marsch, E.: 1991b, MHD Turbulence in the Solar Wind, in Physics of the Inner Heliosphere, Vol. II, eds. R. Schwenn and E. Marsch, (Springer Verlag: Heidelberg), pp. 159–241.

    Chapter  Google Scholar 

  • Marsch, E.: 1992, On the possible role of plasma waves in the heating of chromosphere and corona, in Solar Wind Seven, ed. E. Marsch and R. Schwenn, (Pergamon Press: Oxford, England), pp. 65–68.

    Chapter  Google Scholar 

  • Marsch, E., and Tu, C.-Y.: 1997a, Solar wind and chromospheric network, Solar Physics, 176, 87–106.

    Article  ADS  Google Scholar 

  • Marsch, E., and Tu, C.-Y.: 1997b, The effects of high-frequency Alfvén waves on coronal heating and solar wind acceleration, Astron. Astrophys., 319, L17–L20.

    ADS  Google Scholar 

  • Marsden, R. G.: 1995, The High Latitude Heliosphere, (vol. 72 of Space Science Reviews, Kluwer Academic Publishers, Dordrecht, The Netherlands).

    Book  Google Scholar 

  • Maksimovic, M., Pierrard, V., and Lemaire, J. F.: 1997, A kinetic model of the solar wind with Kappa distribution functions in the corona, Astron. Astrophys., 324, 725–734.

    ADS  Google Scholar 

  • McComas, D. J., Bame, S. J., Feldman, W. C., Gosling, J. T., and Phillips, J. L.: 1992, Solar wind halo electrons from 1–4 AU, Geophys. Res. Lett., 19, 1291–1294.

    Article  ADS  Google Scholar 

  • McKenzie, J. F., Banaszkiewicz, M., and Axford, W. I.: 1995, Acceleration of the high speed solar wind, Astron. Astrophys., 303, L45–L48.

    ADS  Google Scholar 

  • McKenzie, J. F., Axford, W. I., and Banaszkiewicz, M.: 1997, The fast solar wind, Geophys. Res. Lett., 24, 2877–2880.

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 1981, Observations of solar wind helium, Fundam. Cosmic Phys., 7, 131–199.

    ADS  Google Scholar 

  • Neugebauer, M., Goldstein, B. E., Bame, S. J, and Feldman, W. C.: 1994, Ulysses near-ecliptic observations of differential flow between protons and alphas in the solar wind, J. Geophys. Res., 99, 2505–2511.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Goldstein, B. E., Bame, S. J, and Feldman, W. C.: 1996, Ulysses observations of differential alpha-proton streaming in the solar wind, J. Geophys. Res., 101, 17047–17055.

    Article  ADS  Google Scholar 

  • Olsen, E. L., and Leer, E.: 1996, Thermally-driven one-fluid electron-proton solar wind; 8-moment approximation, Astrophys. J., 462, 982–996.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1958, Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–684.

    Article  ADS  Google Scholar 

  • Peter, H., and Marsch, E.: 1997, Ionization layer of hydrogen in the solar chromosphere and the solar wind mass flux, in Proceedings of the Fifth SOHO Workshop, ESA-SP-404, pp. 591–594.

    Google Scholar 

  • Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., Mühlhäuser, K.-H., Rosenbauer, H., and Schwenn, R.: 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075–1092.

    Article  ADS  Google Scholar 

  • Phillips, J. L., Feldman, W. C., Gosling, J. T., and Scime, E. E.: 1995, Solar wind plasma electron parameters based on aligned observations by ICE and Ulysses, Adv. Space Res., 16 (9), 95–100.

    Article  ADS  Google Scholar 

  • Riley, P., Sonett, C. P., Balogh, A., Forsyth, R. J., Scime, E. E., and Feldman, W. C.: 1995, Alfvénic fluctuations in the solar wind: A case study using Ulysses measurements, Space Sci. Rev., 72, 197–200.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 1990, Large scale structure of the interplanetary medium, in Physics of the Inner Heliosphere, Vol. 1, ed. R. Schwenn and E. Marsch, (Springer Verlag: Berlin, Heidelberg, New York), pp. 99–181.

    Chapter  Google Scholar 

  • Schwenn, R., Inhester, B., Plunkett, S. P., Epple, A., Podlipnik, B., Bedford, D. K., Bout, M. V., Brueckner, G. E., Dere, K. P., Eyles, C. J., Howard, R. A., Koomen, M. J., Korendyke, C. M., Lamy, P. L., Llebaria, A., Michels, D. J., Moses, J. D., Moulton, N. E., Paswaters, S. E., Simnett, G. M., Socker, D. G., St. Cyr O. C., Tappin, S. J., and Wang, D.: 1997, First view of the extended green line emission corona at solar activity minimum using the LASCO-C 1 coronagraph on SOHO, Solar Phys., 175, 667–684.

    Article  ADS  Google Scholar 

  • Scime, E. E., Bame, S. J., Feldman, W. C., Gary, S. P., and Phillips, J. L.: 1994, Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations, J. Geophys. Res., 99, 23401–23410.

    Article  ADS  Google Scholar 

  • Scudder, J. D., and Olbert, S.: 1979a, A theory of local and global processes which affect solar wind electrons, 1. The origin of typical 1 AU velocity distribution functions — Steady state theory, J. Geophys. Res., 84, 2755–2772.

    Article  ADS  Google Scholar 

  • Scudder, J. D., and Olbert, S.: 1979b, A theory of local and global processes which affect solar wind electrons, 2. Experimental support, J. Geophys. Res., 84, 6603–6620.

    Article  ADS  Google Scholar 

  • Seely, J. F., Feldman, U., Schühle, U., Wilhelm, K., Curdt, W., and Lemaire, P.: 1997, Turbulent velocities and ion temperatures in the solar corona obtained from SUMER line widths, Astrophys. J., 484, L87–L90.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Jr., Wang, Y.-M., Hawley, S. H., Brueckner, G. E., Dere, K. P., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Paswaters, S. E., Socker, D. G., St. Cyr, O. C., Wang, D., Lamy, P. L., Llebaria, A., Schwenn, R., Simnett, G. M., Plunkett, S., and Biesecker, D. A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R0, Astrophys. J., 484, 472–478.

    Article  ADS  Google Scholar 

  • Smith, E. J., Neugebauer, M., Balogh, A., Bame, S. J., Lepping, R. P., and Tsurutani, B. T.: 1995, Ulysses observations of latitude gradients in the heliospheric magnetic field: Radial component and variances, Space Science Reviews, 72, 165–170.

    Article  ADS  Google Scholar 

  • Thieme, K. M., Marsch, E., and Schwenn, R.: 1990, Spatial structures in high-speed streams as signatures of fine structures in coronal holes, Annales Geophysicae, 8 (11), 713–724.

    ADS  Google Scholar 

  • Tsurutani, B. T., Ho, C. M., Arballo, J. K., Lakhina, G. S., Glassmeier, K.-H., and Neubauer, F. M.: 1997, Nonlinear electromagnetic waves and spherical arc-polarized waves in space plasmas, Plasma Phys. Control Fusion, 39, A237–A250.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Pu, Z.-Y., and Wei, F.-S.: 1984, The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equations and its solution, J. Geophys. Res., 89, 9695–9702.

    Article  ADS  Google Scholar 

  • Tu, C.-Y.: 1987, A solar wind model with the power spectrum of Alfvénic fluctuations, Solar Phys., 109, 149–186.

    Article  ADS  Google Scholar 

  • Tu, C.-Y.: 1988, The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind, J. Geophys. Res., 93, 7–20.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., and Marsch, E.: 1995a, MHD structures, waves and turbulence in the solar wind: Observations and theories, Space Science Reviews, 73, 1–210.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., and Marsch, E.: 1995b, Comment on “Evolution of energy-containing turbulent eddies in the solar wind” by W. H. Matthaeus, S. Oughton, D. H. Pontius Jr., and Y. Zhou, J. Geophys. Res., 100, 12323–12328.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., and Marsch, E. (1997): Two-fluid model for heating of the solar corona and acceleration of the solar wind by high-frequency Alfvén waves, Solar Physics, 171, 363–391.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E., Wilhelm, K., and Curdt, W.: 1998, Ion temperatures in a solar polar coronal hole observed by SUMER on SOHO, Astrophys. J., 503, 475–482.

    Article  ADS  Google Scholar 

  • von Steiger, R., Geiss, J., Gloeckler, G., and Galvin, A. B.: 1995, Kinetic properties of heavy ions in the solar wind from SWICS/Ulysses, Space Science Reviews, 72, 71–76.

    Article  ADS  Google Scholar 

  • Vasquez, B. J., and Hollweg, J.: 1998a, Formation of spherically polarized Alfvén waves and imbedded rotational discontinuities from a small number of entirely oblique waves, J. Geophys. Res., 103, 335.

    Article  ADS  Google Scholar 

  • Vasquez, B. J., and Hollweg, J.: 1998b, Formation of imbedded rotational discontinuities with nearly field aligned normals, J. Geophys. Res., 103, 349.

    Article  ADS  Google Scholar 

  • Wang, Y. M., and Sheeley, N. R., Jr.: 1990, Solar wind speed and coronal flux-tube expansion, Astrophys. J., 355, 726.

    Article  ADS  Google Scholar 

  • Wang, Y. M., Sheeley, N. R., Jr., Walters, J. H., Brueckner, G. E., Howard, R. A., Michels, D. J., Lamy, P. L., Schwenn, R., and Simnett, G. M.: 1998, Origin of streamer material in the outer corona, Astrophys. J., 498, L165.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J. C., Grewing, M., Huber, M. C. E., Jordan, S. D., Poland, A. I., Thomas, R. J., Kühne, M., Timothy, J. G., Hassler, D. M., and Siegmund, O. H. W.: 1995, SUMER — Solar Ultraviolet Measurements of Emitted Radiation, Solar Phys., 162, 189–231.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Lemaire, P., Curdt, W., Schühle, U., Marsch, E., Poland, A. I., Jordan, S. D., Thomas, R. J., Hassler, D. M., Huber, M. C. E., Vial, J.-C., Kühne, M., Siegmund, O. H. W., Gabriel, A., Timothy, J. G., Grewing, M., Feldman, U., Hollandt, J., and Brekke, P.: 1997a, First results of the SUMER telescope and spectrometer on SOHO, Solar Phys., 170, 75–104.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Marsch, E., Dwivedi, B. N., Hassler, D. M., Lemaire, P., Gabriel, A. H., and Huber, M. C. E.: 1998, The solar corona above polar coronal holes as seen by SUMER on SOHO, Astrophys. J., 500, 1023–1038.

    Article  ADS  Google Scholar 

  • Withbroe, G. L.: 1988, The temperature structure, mass and energy flow in the corona and inner solar wind, Astrophys. J., 325, 442–467.

    Article  ADS  Google Scholar 

  • Woch, J., Axford, W. I., Mall, U., Wilken, B., Livi, S., Geiss, J., Gloeckler, G., and Forsyth, R. J.: 1997, SWICS/Ulysses observations: The three-dimensional structure of the heliosphere during solar minimum, Geophys. Res. Lett., 24, 2885–2888.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marsch, E. (1999). Solar Wind Models from the Sun to 1 AU: Constraints by in Situ and Remote Sensing Measurements. In: Kohl, J.L., Cranmer, S.R. (eds) Coronal Holes and Solar Wind Acceleration. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9167-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9167-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5267-4

  • Online ISBN: 978-94-015-9167-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics