Skip to main content

Effect of Fin Heat Conduction on the Performance of Punched Winglets in Finned Oval Tubes

  • Chapter

Part of the book series: Nato ASI Series ((NSSE,volume 355))

Abstract

Wing-type longitudinal vortex generators were employed for performance enhancement of finned tube heat exchanger elements. The effect of finite fin heat conduction on the performance of fins and longitudinal vortex generators was considered. Three-dimensional developing laminar flows and conjugate heat transfer in high performance finned oval tube elements, with and without punched deltawinglets, were studied numerically with a Finite-Volume Method. Body-fitted grids were used to satisfy exactly the thermal and hydrodynamic boundary conditions. The conjugate heat transfer was realized by iterations of convection in the flow field and conduction in the fin. Reynolds numbers of 100<Re<500, and fin conduction parameters of 100<Fi<1000 were varied. Temperature fields, local fin heat transfers and fin efficiencies were presented. Performance of finned oval tube elements with up to four in-line or staggered winglets was evaluated. For the investigated base configuration, performance enhancement through winglets increased with increasing Reynolds number and fin conductivity. For performance comparisons of different configurations, results of isothermal fins could be transferred to non-isothermal fins. The performance enhancement by winglets for fins with finite conduction may be reduced by about 20% in practical applications compared to that for isothermal fins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiebig, M. & Chen, Y. (1998) Heat Transfer enhancement by Wing-Type Longitudinal Vortex Generators and Their Application to Finned Oval Tube Heat Exchanger Elements, this book.

    Google Scholar 

  2. Harper, D.R. & Brown, W.B. (1923) Mathematical Equation for Heat Conduction in the Fins of Air-cooled Engines, NACA Report No. 158.

    Google Scholar 

  3. Luikov, A.V. (1974) Conjugate Convective Heat Transfer Problem, Int. J Heat Mass Transfer, Vol. 17, pp. 257–265

    Article  Google Scholar 

  4. Sparrow, E.M. & Lin, S.H. (1964) Heat Transfer Characteristics of Polygonal and Plate Fins, Int. J. Heat Mass Transfer, Vol. 7. p.951–953.

    Article  MathSciNet  Google Scholar 

  5. Rosman, E.C., Karajilevscov, P., & Saboya, F.E.M. (1984) Performance of Oneand Two-Row Tube and Plate Fin Heat Exchangers, J. Heat Transfer, Vol. 106, pp. 627–632.

    Article  Google Scholar 

  6. Baehr, H.D. & Schubert, F. (1959) Die Bestimmung des Wirkungsgrades quadrstischer Scheibenrippen mit Hilfe eines elektrisches Analogie-Verfahrens, Kältetechnik, 11 Jahrgang, Heft 10, pp. 320–325.

    Google Scholar 

  7. Moffat, R.B. (1990) Experimental Heat Transfer, Procs. of the 9th IHTC, Jerusalem, Vol. 1, pp. 187–205.

    Google Scholar 

  8. Chen, Y., Fiebig, M., & Mitra, N.K. (1997) Numerical Investigation of Fin Efficiencies in a Finned Oval Tube, Procs. 15th IMACS World Congress, 24–29 August, Berlin, pp. 761–766.

    Google Scholar 

  9. Chen, Y., Fiebig, M., & Mitra, N.K. (1997) Numerical Investigation of Flow and Heat Transfer in a Finned Oval Tube, Procs. of the 3rd ISHMT-ASME Heat and Mass Transfer Conference, pp.735–741, IIT Kanpur, India, Narosa Press.

    Google Scholar 

  10. Chen, Y., Fiebig, M., & Mitra, N.K. (1997) Influence of the Angle of Attack of a Wing-Type VG on the Heat Transfer and Flow Loss of a Finned Oval Tube, Procs. Eurotherm seminar #55, “Heat Transfer in single phase flows 5”, 18–19 September Santorini, Greece.

    Google Scholar 

  11. Chen, Y., Fiebig, M., & Mitra, N.K. (1998) A Numerical Study of Finned Oval Tube Heat Exchanger Elements with Winglet Vortex Generators, Procs. of the 1998 International Conference on Energy & Environment, 4–6 May, Shanghai, China.

    Google Scholar 

  12. Fiebig, M., Grosse-Gorgemann, A., Chen, Y., & Mitra, N.K. (1995) Conjugate Heat Transfer of a Finned tube. Part A: Heat Transfer behavior and Occurrence of Heat Transfer Reversal, Numerical Heat Transfer, Part A, Vol. 28, pp. 133–146.

    Article  Google Scholar 

  13. Fiebig, M., Chen, Y., Grosse-Gorgemann, A., & Mitra, N.K. (1995) Conjugate Heat Transfer of a Finned tube. Part B: Heat Transfer Augmentation and avoidance of Heat Transfer Reversal by LVG, Numerical Heat Transfer, Part A, Vol. 28, pp. 147–155.

    Article  Google Scholar 

  14. Hilgenstock, A. (1988) A Fast Method for Elliptic Generation of 3D Grids with Full Boundary Control, in: Numerical Grid Generation in Computational Fluid Mechanics, ed. by S. Sengupta et al., Swansea, Pineridge, pp. 137–146.

    Google Scholar 

  15. Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation.

    MATH  Google Scholar 

  16. Van Doornaal, J. P., & Raithby, G. D. (1984) Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows, Numerical Heat Transfer, Vol. 7, pp.147–163.

    Article  Google Scholar 

  17. Rhie, C.M., & Chow, W.L. (1983) Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation, AIAA J., Vol. 21, No. 11, pp. 1525–1532.

    Article  MATH  Google Scholar 

  18. Stone, H.L. (1968) Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, SIAM J. Numer. Anal., Vol. 5, No. 3, pp. 530–558.

    Article  MathSciNet  MATH  Google Scholar 

  19. Peric, M. (1985) A Finite Volume Method for the Prediction of ThreeDimensional Fluid Flow in Complex Ducts, Dissertation, University of London.

    Google Scholar 

  20. Chen, Y. (1998) Leistungssteigerung von Wärmeübertragern mit berippten Ovalrohren durch Längswirbelerzeuger--Numerische Simulation von Strömung und konjugiertem Wärmeübergang. Shaker Verlag, Aachen, Germany.

    Google Scholar 

  21. Kost, A. (1993) Strömungsstruktur und Drehmomentübertragung in hydrodynamischen Kupplung, VDI-Verlag GmbH, Düsseldorf.

    Google Scholar 

  22. Bai, L. (1995) Numerische Untersuchung von turbulenten Strömungen in hydrodynamischen Kupplungen, VDI-Verlag GmbH, Düsseldorf.

    Google Scholar 

  23. Große-Gorgemann, A. (1996) Numerische Untrsuchung der laminaren oszillierenden Strömung und des Wärmeüberganges in Kanälen mit rippenförmigen Einbauten, VDI-Verlag GmbH, Düsseldorf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, Y., Fiebig, M. (1999). Effect of Fin Heat Conduction on the Performance of Punched Winglets in Finned Oval Tubes. In: Kakaç, S., Bergles, A.E., Mayinger, F., Yüncü, H. (eds) Heat Transfer Enhancement of Heat Exchangers. Nato ASI Series, vol 355. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9159-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9159-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5190-5

  • Online ISBN: 978-94-015-9159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics