Skip to main content

Modern Advances in Optical Measuring Techniques Tools to Support Energy Conservation

  • Chapter
Heat Transfer Enhancement of Heat Exchangers

Part of the book series: Nato ASI Series ((NSSE,volume 355))

Abstract

Transport processes — heat and mass — play an important role in energy conservation. To optimise these processes, optical measuring techniques can be of great help. An overview is given on various optical measuring techniques, which give insight into transport processes, especially with heat transfer and with combustion. A short introduction into holography, holographic interferometry as well as Rayleigh Scattering and Laser Induced Fluorescence show, together with examples from several fields of thermo-fluiddynamic research work, the capabilities of optical measuring techniques to improve transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayinger, F. (Ed.) (1954) Optical Measurements, Techniques and Applications, Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  2. Gabor, D. (1948) A New Microscopic Principle, Nature 161; (1949) Microscopy by Reconstructed Wavefronts, Proc. Roy. Soc. A 197; (1951) Microscopy by Reconstructed Wavefronts II, Proc. Roy. Soc. A 197.

    Google Scholar 

  3. Caulfield, H.J.; Sun Li (1970) The Applications of Holography, Wiley, New York.

    Google Scholar 

  4. Collier, C.B.; Burckhardt; Sun Li (1971) Optical Holography, Academic Press, New York.

    Google Scholar 

  5. Smith, H.M. (1977) Holographic Recording Materials, Springer Verlag, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  6. Gebhard, P.; Mayinger, F. (1996) Evaluation of Pulsed Laser Holograms of Flashing Sprays by Digital Image Processing, Flow Visualisation and Image Processing of Multiphase Systems, ASME, FED-Vol. 209.

    Google Scholar 

  7. Gebhard, P. (1996) Zerfall und Verdampfung von Einspritzstrahlen aus lamellenbildenden Düsen, Dissertation, Technische Universität München.

    Google Scholar 

  8. Feldmann, O.; et al. (1997) Evaluation of Pulsed Laser Holograms of Flashing Sprays by Digital Image Processing and Holographic Particle Image Velocimetry, Proc., CSNI Specialist Meeting on Advanced Instrumentation, Santa Barbara, USA.

    Google Scholar 

  9. Panknin, W.; Mayinger, F. (1974) Holography in Heat and Mass Transfer, 5th Int. Heat Transfer Conference, Tokio, VI 28.

    Google Scholar 

  10. Panknin, W. (1977) Eine holographische Zweiwellenlängen Interferometrie zur Messung überlagerter Temperatur- und Konzentrationsgrenzschichten, Dissertation, Universität Hannover.

    Google Scholar 

  11. Nordmann, D.; Mayinger, F. (1981) Temperatur, Druck und Wärmetransport in der Umgebung kondensierender Blasen, VDI-Forschungsheft 605.

    Google Scholar 

  12. Bohren, C.F.; Huffmann D.R. (1983) Absorption and scattering by small particles, John Wiley and Sons, New York.

    Google Scholar 

  13. Long, D.A. (1977) Raman spectroscopy, Mc Graw-Hill, London.

    Google Scholar 

  14. Alonso, M.; Finn, E.J. (1988) Quantum Physics, Addison-Wesley.

    Google Scholar 

  15. Hanson, R.K.; Seitzmann, J.M.; Paul, P.H. (1990) Planar fluorescence imaging of combustion gases, Applied Physics, Vol. B 50.

    Google Scholar 

  16. Algermissen, Personal communication, University Stuttgart.

    Google Scholar 

  17. Ardey, N; Mayinger, F. (1995) Influence of transport phenomena on the structure of lean premixed hydrogen air flames, 11 th Proc. Of Nuclear Thermal Hydraulics, San Francisco, California, Oct. 29 — Nov. 2 and Amer. Nuclear Soc., S. 33–41 (ANS Order No. 700227).

    Google Scholar 

  18. Dorer, F.; Prechtl, P.; Mayinger, F. (1997) Investigation of mixture formation on combustion processes in a hydrogen fuelled Diesel engine, HYPOTHESIS II, Intern. Symposium, Aug. 18–22, Grimstadt, Norway (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mayinger, F. (1999). Modern Advances in Optical Measuring Techniques Tools to Support Energy Conservation. In: Kakaç, S., Bergles, A.E., Mayinger, F., Yüncü, H. (eds) Heat Transfer Enhancement of Heat Exchangers. Nato ASI Series, vol 355. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9159-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9159-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5190-5

  • Online ISBN: 978-94-015-9159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics