Skip to main content

Surfactants and Stress Conditions at Fluid Interfaces

  • Chapter
Foams and Emulsions

Part of the book series: NATO ASI Series ((NSSE,volume 354))

  • 938 Accesses

Abstract

Surfactants are amphiphilic molecules that adsorb on fluid interfaces, where they reduce the surface tension. If the interface is moving, surface convection can distribute surfactant non-uniformly, creating surface tension gradients or Marangoni stresses. These two phenomena are the keys to understanding the stress response of surfactant-laden interfaces in multiphase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levich, V.G., Physicochemical Hydrodynamics Prentice Hall, Englewood Cliffs, N.J., 1962

    Google Scholar 

  2. Stone, H.A., “A Simple Derivation of the time-dependent convective diffusion equation for transport along a deforming interface”, Phys. Fluids A 2, 111–112, (1990)

    Article  CAS  Google Scholar 

  3. Wong, H., Rumshitzski, D. and Malderelli, C.,“On the surfactant mass balance at a deforming fluid interface”, Phys. Fluids 8, 3203, (1996)

    Article  CAS  Google Scholar 

  4. Stebe, K.J., Lin, S.Y. and Maldarelli, C., “Remobilizing surfactant retarded fluid particle interfaces. I. Stress-free conditions at interfaces of micellar solutions of surfactants with fast sorption kinetics”, Phys Fluids A, 3 (1), 3–20, (1991)

    Article  CAS  Google Scholar 

  5. Chang, Chien-Hsiang and Franses, Elias, “Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data and mechanisms”, Colloids and Surfaces A, 100 1–45 (1990)

    Article  Google Scholar 

  6. Lin, S.Y., McKeigue, K., and Maldarelli, C., AIChE J., “Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization”, 36, 1785–1795, (1990)

    CAS  Google Scholar 

  7. Johnson, D. and Stebe, K. “Experimental Confirmation of the Oscillating Bubble Technique with Comparison to the Pendant Bubble Method: The Adsorption Dynamics of 1-decanol”, J. Colloid Int. Sci., 182, 526–538, (1996)

    Article  CAS  Google Scholar 

  8. reviewed in van den Temple and Lucassen-Reynders, “Relaxation Processes at Fluid Interfaces”, Advances in Colloid Interface Sci. 18, 281–301, (1983)

    Article  Google Scholar 

  9. reviewed by Langevin, D. see chapter in this text

    Google Scholar 

  10. Macleod, C.A. and Radke, C.J., “Surfactant Exchange Kinetics at the Air/Water Interface from the Dynamic Tension of Growing Liquid Drops”, J. Colloid Int. Sci. 166, 73–88, (1994)

    Article  CAS  Google Scholar 

  11. Davis, R. and Acrivos, A., “The influence of surfactants on the creeping motion of bubbles”, Chem Eng Sci. 21, 681–685, (1966)

    Article  CAS  Google Scholar 

  12. Sadhal, S.S. and Johnson, R.E., “Stokes Flow Past Bubbles and Drops Partially Coated With Thin Films. Exact Solution”, J. Fluid Mech., 126, 237–250, (1983)

    Article  Google Scholar 

  13. He, Z. Dagan, Z. and Maldarelli, C. “The Size of Stagnant Caps of Bulk Soluble Surfactant on the Interfaces of Translating Fluid Droplets”, J. Colloid Int. Sci. 146, 442–451, (1991)

    Article  Google Scholar 

  14. Holbrook, J.A and Levan, M.D., “Retardation of Droplet Motion by Surfactant. Part I. Theoretical Development and Asymptotic Solutions”, Chem Eng Comm. 20, 191–207, (1983)

    Article  CAS  Google Scholar 

  15. Holbrook, J.A and Levan, M.D., “Retardation of Droplet Motion by Surfactant. Part II. Numerical Solutions for Exterior Diffusion, Surface Diffusion and Adsorption Kinetics”, Chem Eng Comm. 20, 273–290, (1983)

    Article  CAS  Google Scholar 

  16. Chen, J. and Stebe, K.J. “ Marangoni Retardation of the Terminal Velocity of a Settling Droplet: The Role of Surfactant Physico-chemistry”, J. Colloid Int. Sci. 178, 144–155, (1996)

    Article  CAS  Google Scholar 

  17. Stone, H.A. and Leal, L.G, “ The Effects of Surfactants on Drop Deformation and Breakup”, J. Fluid Mech. 220, 161–186, (1990)

    Article  CAS  Google Scholar 

  18. Milliken, W.J., Stone, H.A., and Leal, L.G.,“The Effects of Surfactant on the Transient Motion of Newtonian Drops”,Phys. Fluids A 5, 69–79, (1993)

    Article  CAS  Google Scholar 

  19. Milliken W.J. and Leal, L.G., “The Influence of surfactant on the deformation and breakup of a viscous drop. the effect of surfactant solubility”, J. Colloid Int. Sci, 166, 275–285, (1994)

    Article  CAS  Google Scholar 

  20. Pawar, Y.P. and Stebe, K.J. “Marangoni effects on drop deformation in an extensional flow: the role of surfactant physico-chemistry. I. Insoluble Surfactants”, Phys. Fluids 8 (7), 1738–1751, (1996)

    Google Scholar 

  21. Eggleton, C.D., Pawar, Y.P. and Stebe, K.J., “Insoluble Surfactants on a Drop in an Extensional Flow: A Generalization of the Stagnated Interface Surface Limit to Deforming Interfaces”, in review,J. Fluid Mech.

    Google Scholar 

  22. Barthes-Biesel, D. and Acrivos, A., “ Deformation and Burst of a Liquid Droplet Freely Suspended in a Linear Shear field”, J. Fluid Mech. 61, 1–21 (1973)

    Article  Google Scholar 

  23. Rallison, J.M. and Acrivos, A., “A Numerical Study of the Deformation and Burst of a Viscous Drop in an Extensional Flow”, J.Fluid Mech. 89, 191–200, (1978)

    Article  Google Scholar 

  24. Eggleton, C. and Stebe, K.J. “ Surfactants and stresses on deforming interfaces: A soluble surfactant on a drop in an extensional flow” in preparation for J. Colloid Int. Sci.

    Google Scholar 

  25. Stebe, K.J. and Maldarelli, C. “ Remobilizing Surfactant Retarded Fluid Particle Interfaces II. Controlling the Surface Mobility at Interfaces of Solutions Containing Surface Active Components” J. Colloid hit. Sci. 163, 177–189 (1994)

    Article  CAS  Google Scholar 

  26. Ferri, J.K. and Stebe, K.J. “The Rapid Reduction of Surface Tension: a Structure-Property Study of Acetylenic Diol Surfactants”, in preparation for J. Colloid Int. Sci.

    Google Scholar 

  27. Scriven, L.E., “Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids”, Chem. Eng. Sci. 12, 98–108, (1960)

    Article  CAS  Google Scholar 

  28. Slattery, J.C. Interfacial Transport Phenomena Springer-Verlag, New York, 1990

    Google Scholar 

  29. Edwards, D., Wasan, D. and Brenner, H. Interfacial Transport Processes and Rheology, Butterworth Hienemann, Boston, MA, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stebe, K.J., Eggleton, C.D. (1999). Surfactants and Stress Conditions at Fluid Interfaces. In: Sadoc, J.F., Rivier, N. (eds) Foams and Emulsions. NATO ASI Series, vol 354. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9157-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9157-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5180-6

  • Online ISBN: 978-94-015-9157-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics