Skip to main content

Hard Cellular Materials in the Human Body: Properties and Production of Foamed Polymers for Bone Replacement

  • Chapter
Foams and Emulsions

Part of the book series: NATO ASI Series ((NSSE,volume 354))

Abstract

Hard tissues such as bone are composed structurally by a compact surface and a cellular core, which is very similar to a synthetic structural foam material. In this paper the structure of human bone is discussed and related to that of synthetic foamed materials that are aimed at copying bone structure.

This chapter also reports on the development of processing routes, based on injection moulding for producing cellular materials that are intended to reproduce the structure of bone. Two different polymeric materials are used: novel starch based polymers (biodegradable) and polyethylene (bioinert), in order to develop materials both for temporary and permanent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ravaglioli, A. and Krajewski, A. (1992) Bioceramics, Chapman & Hall, London.

    Book  Google Scholar 

  2. Katz, J.L. (1995) Mechanics of hard tissue in J.D. Bronzino (ed), The Biomedical Enginering Handbook, CRC Handbook Publishers, USA, pp. 273–290.

    Google Scholar 

  3. Davies, D.V. (1972) Gray ‘S Anatomy, Longmans, London.

    Google Scholar 

  4. Ondracek, G. (1986) Microstructure-thermomechanical property correlation of two-phase and porous materials, Materials Chemistry and Physics 15, 281–313

    Article  CAS  Google Scholar 

  5. Isaac, D.H. and Green, M. (1994) The origins ofprefei,ed orientation in bone, Clinical Materials 15, 79–87.

    Article  Google Scholar 

  6. Dabestani, M. and Bonfield, W. (1990) Fracture behaviour of compact bone, Advances in Biomaterials 9, 7–12.

    Google Scholar 

  7. Isaac, D.H. and Green, M. (1991) Preferred orientation in bone, Interfaces in Medicine and Mechanics 2, 76–85.

    Article  Google Scholar 

  8. Reis, R.L. and Cunha, A.M. (1995) Mechanical characterization of polymers and polymer matrix composites aimed at orthopaedic applications, in H. Skov (ed), Medical Plastics 9, Soc. Plast. Eng., pp 71–712.

    Google Scholar 

  9. Matthews, F.L. and Rawlings, R.D. (1996) Composite Materials: Engineering And Science, Chapman & Hall, London.

    Google Scholar 

  10. Bonfield, W. (1993) Properties of bone as a material in F. Burny, R. Puers (eds), Monitoring of Orthopoedic Implants 4, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  11. l. Bonfield, W. (1987) Advances in the fracture mechanics of cortical bone, J. Biomechanics 20, 1071.

    CAS  Google Scholar 

  12. lakes, R. (1995) Composite biomaterials in J.D. Bronzino (ed), The Biomedical Enginering Handbook, CRC Handbook Publishers, USA, pp. 598–610.

    Google Scholar 

  13. Hench, L. (1995) Bioactive implants, Chemistry Industry vol 3, 547–550.

    Google Scholar 

  14. Williams, D.F. (1987) Definitions in biomaterials, Progress in Biomedical Engineering 4, Elsevier.

    Google Scholar 

  15. Williams, D.F. (1989) Polymer degradation in biological environments, in G. Allen, J.C. Bevington, G.C. Eastmond, A. Ledwith, S. Russo, P. Sigwolt (eds), Comprehensive Polymer Science 6, Pergamon Press, Oxford, pp 607–619.

    Chapter  Google Scholar 

  16. Ratner, B.D. (1989) Biomedical applications of synthetic polymers in G. Allen, J.C. Bevington, S.L. Aggarwal, (eds), Comprehensive Polymer Science, Pergamon Press, Oxford, pp 201–249.

    Google Scholar 

  17. Bonfield, W., Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement, in P. Duchyne, J.E. Lemons (eds), Annals of the New York Academy of Science 253,New York, pp 173–177.

    Google Scholar 

  18. Rokkanen, P.U. (1991) Absorbable materials in orthopaedic surgery, Annals of Medicine 23, 109–115.

    Article  CAS  Google Scholar 

  19. Anderson, J.M. and Zhao, Q.H. (1991) Biostability of biomedical polymers, MRS Bulletin, 75–77.

    Google Scholar 

  20. Reis, R. L., Cunha, A. M., Allan, P. S. and Bevis, M. J. (1996) Improvement of the mechanical properties of hidroxylapatite reinforced starch based polymers through processing, Polymers in Medicine Surgery, Institute of materials, London, pp 1 995–2002.

    Google Scholar 

  21. Reis, R. L., Cunha, A. M., Allan, P. S. and Bevis, M.J. (1997), Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites, Advances in Polymer Technology 16, in press

    Google Scholar 

  22. Reis, R. L., Cunha, A. M. and Bevis, M.J. (1997) Non-convencional processing routes on the development of anisotropic and biodegradable composites of starch based thermoplastics reinforced with bone-like ceramics, Plastics-Saving Planet Earth, Procedings of the SPE 55thAnnual technical Conference, ANTEC’97, Toronto, 2849–2853

    Google Scholar 

  23. Brewer, G.W. (1989) Properties of thermoplastics structural foams in Engineered Materials Handbook 2, ASM International, New York, pp 508–513.

    Google Scholar 

  24. Khakhar, D.V. and Joseph, K.V. (1994) Optimization of the structure of integral skin foams for maximal flexural properties, Polymer Engineering and Science 34, 726–733.

    Article  Google Scholar 

  25. Mooney, D.J., Baldwin, D., Suh,N., Vacanti, J. and Langer, R. (1996) Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials 17, 1417–1422.

    CAS  Google Scholar 

  26. Devin, J.E., Attawia,M.A. and Laurencin, C.T. (1996) Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair, Journal of Biomaterials Science–Polymer Edition 7, 661–669.

    CAS  Google Scholar 

  27. Szivek, J.A., Thompson, J.D. and Benjamin, J.B. (1995) Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types, Journal of Applied Biomaterials 6, 125–128.

    Article  CAS  Google Scholar 

  28. Reis,R. L., Cunha, A. M., Allan, P. S. and Bevis, M.J. (1996) Mechanical behavior of injection-molded starch-based polymers, Polymers for Advanced Technologies 7, 784–790.

    Article  CAS  Google Scholar 

  29. Reis, R. L., Mendes, S. C., Cunha, A. M. and Bevis, M. J. (1997) Processing and in vitro degradation of starch/EVOH thermoplastic blends, Polymer International 43, 347–352

    Article  CAS  Google Scholar 

  30. Reis, R. L., Cunha, A. M., Oliveira, M.J., Campos, A.R., Bevis, M.J., (1997), Relationship between processing and mechanical properties of injection molded high molecular weight polyethylene/hidroxylapatite composites, Polymer Engineering Science,in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pereira, C.S., Gomes, M.E., Reis, R.L., Cunha, A.M. (1999). Hard Cellular Materials in the Human Body: Properties and Production of Foamed Polymers for Bone Replacement. In: Sadoc, J.F., Rivier, N. (eds) Foams and Emulsions. NATO ASI Series, vol 354. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9157-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9157-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5180-6

  • Online ISBN: 978-94-015-9157-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics