Skip to main content

An Introduction to Cellular Automata

Some basic definitions and concepts

  • Chapter
Cellular Automata

Part of the book series: Mathematics and Its Applications ((MAIA,volume 460))

Abstract

At the beginning of this story is John von Neumann. As far back as 1948 he introduced the idea of a theory of automata in a conference at the Hixon Symposium, September 1948 (von Neumann, 1951). From that time on, he worked to what he described himself not as a theory, but as “an imperfectly articulated and hardly formalized ”body of experience“ (introduction to ”The Computer and the Brain“, written around 1955-56 and published after his death (von Neumann, 1958)). He worked up to conceive the first cellular automaton (he is also said to have introduced the cellular epithet (Burks, 1972)). He also left interesting views about implied mathematics, including logics, probabilities, leading from the discrete to the continuous (von Neumann, 1951; von Neumann, 1956; von Neumann, 1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert J. and Culik II K. A simple universal cellular automaton and its one-way totalistic version. Complex Systems. Vol. no. 1: 1–16, 1987.

    Google Scholar 

  • Allouche J.-P., v. Haeseler F., Peitgen H.-O. and Skordev G. Linear cellular automata, finite automata and Pascal’s triangle. Discrete App!. Math. Vol. no. 66: 1–22, 1996.

    Google Scholar 

  • Allouche J.-P., v. Haeseler F., Peitgen H.-O., Petersen A. and Skordev G. Automaticity of double sequences generated by one-dimensional cellular automata. To appear in Theoretical Computer Science.

    Google Scholar 

  • Aso H. and Honda N. Dynamical Characteristics of Linear Cellular Automata. Journal of Computer and System Sciences. Vol. no. 30: 291–317: 1985.

    Google Scholar 

  • Banks E. R. Universality in Cellular Automata. I.E.E.E. Ann. Symp. Switching and Automata Theory. Santa Monica, Vol. no. 11: 194–215, 1970.

    Google Scholar 

  • Bartlett R. and Garzon M. Monomial Cellular Automata. Complex Systems. Vol. no. 7: 367–388, 1993.

    Google Scholar 

  • Bartlett R. and Garzon M. Bilinear Cellular Automata. Complex Systems. Vol. no. 9: 455–476, 1995.

    Google Scholar 

  • Blanchard F., Kfu-ka P. and Maass A. Topological and measure-theoretic properties of one-dimensional cellular automata. Physica D. Vol. no. 103: 86–99, 1997.

    Google Scholar 

  • Burks E. Essays on Cellular Automata,University of Illinois Press, 1972.

    Google Scholar 

  • Burks E. Theory of Self-reproduction, University of Illinois Press, Chicago, 1966.

    Google Scholar 

  • Byl J. Self-reproduction in small cellular automata. Physica D. Vol. no. 34: 295–299, 1989.

    Google Scholar 

  • Cayley A. Theory of groups. American Journal of Mathematics. Vol. no. 1: 50–52, 1878.

    Google Scholar 

  • Choffrut C. and (ulik II K. On real-time cellular automata and trellis automata. Acta Informatica. Vol. no. 21: 393–407, 1984.

    Google Scholar 

  • Codd E.F. Cellular Automata, Academic Press, New York, 1968.

    MATH  Google Scholar 

  • Cole S. Real-time computation by n-dimensional iterative arrays of finite-state machine. IEEE Trans. Comput.Vol. no. C-18: 349–365, 1969.

    Google Scholar 

  • Čulik II K. and Yu S. Undecidability of CA classification schemes. Complex Systems. Vol. no. 2: 177–190, 1988.

    Google Scholar 

  • Čulik II K., Pachl J. and Yu S. On the limit sets of cellular automata. SIAM J. Comput. Vol. 18 no. 4: 831–842, 1989.

    Google Scholar 

  • Čulik II K., Dube S. Fractal and Recurrent Behavior of Cellular Automata. Complex Systems. Vol. no. 3: 253–267, 1989.

    Google Scholar 

  • Cutland N. Computability,Cambridge University Press, 1980.

    Google Scholar 

  • Delorme M., Mazoyer J. and Tougne L. Discrete parabolas and circles on 2D-cellular automata. To appear in Theoretical Computer Science.

    Google Scholar 

  • Dubacq J.-C. How to simulate Turing machines by invertible one-dimensional cellular automata. International Journal of Foundations of Computer Science,Vol.6 no. 4: 395–402, 1995.

    Google Scholar 

  • Durand B. Global properties of 2D-cellular automata. in Cellular Automata and Complex Systems, Golès E. and Martinez S. Eds, Kluwer, 1998.

    Google Scholar 

  • Fischer P.C. Generation of primes by a one dimensional real time iterative array. Journal of A.C.M. Vol. no. 12: 388–394, 1965.

    Google Scholar 

  • Gajardo A. Universality in a 2-dimensional cellular space with a neighborhood of cardinality 3. Preprint, 1998.

    Google Scholar 

  • Garzon M. Cyclic Automata. Theoretical Computer Science,Vol. no. 53: 307–317, 1987.

    Google Scholar 

  • Garzon M. Cayley Automata. Theoretical Computer Science,Vol. no. 103: 83–102, 1993.

    Google Scholar 

  • Garzon M. Models of Massive Parallelism,Springer, 1995.

    Google Scholar 

  • Godsil C. and Imrich W. Embedding graphs in Cayley graphs. Graphs and Combinatorics,Vol. no. 3: 39–43, 1987.

    Google Scholar 

  • Goles E., Maass A. and Martinez S. On the Limit Set of some Universal Cellular Automata. Theoretical Computer Science,Vol. no. 110: 53–78, 1993.

    Google Scholar 

  • Head T. One-dimensional cellular automata: injectivity from unambiguity. Complex systems,Vol. no. 3: 343–348, 1989.

    Google Scholar 

  • Hedlund G. Transformations commuting with the shift. In: Topological Dynamics, eds. Auslander J. and Gottschalk W. G. ( Benjamin, New York, 1968 ), 259

    Google Scholar 

  • Hedlund G. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theor. Vol. 3 no. 320, 1969.

    Google Scholar 

  • Heen O. Economie de ressources sur Automates Cellulaires. Diplôme de Doctorat, Université Paris 7 (in french), 1996.

    Google Scholar 

  • Hurd L. Formal language characterizations of cellular automata limit sets. Complex Systems Vol. 1 no. 1: 69–80, 1987.

    Google Scholar 

  • Ishii S. Measure theoretic approach to the classification of cellular automata. Discrete Applied Mathematics Vol. no. 39: 125–136, 1992.

    Google Scholar 

  • Jen E. Linear cellular automata and recurrence systems in finite fields. Comm. Math. Physics Vol. no. 119: 13–28, 1988.

    Google Scholar 

  • Kari J. Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences,Vol. no. 48: 149–182, 1994.

    Google Scholar 

  • Langton C. Self-Reproduction in Cellular Automata. Physica,Vol. no. 100: 135–144, 1984.

    Google Scholar 

  • Lindgren K. and Nordahl M. Universal computation in simple one dimensional cellular automata. Complex Systems Vol. no. 4: 299–318, 1990.

    Google Scholar 

  • Macle A. and Mignosi F. Garden of Eden configurations for cellular automata on Cayley graphs of groups. SIAM Journal on Discrete Mathematics,Vol. no. 6: 44–56, 1993.

    Google Scholar 

  • Martin O., Odlyzko A. and Wolfram S. Algebraic properties of cellular automata. Comm. Math. Phys., Vol. no. 93: 219–258, 1984.

    Google Scholar 

  • Martin B. A universal automaton in quasi-linear time with its s-n-m form. Theoretical Computer Science Vol. no. 124: 199–237, 1994.

    Google Scholar 

  • Mazoyer J. Computations on one-dimensional cellular automaton. Annals of Mathematics and Artificial Intelligence Vol. no. 16: 285–309, 1996.

    Google Scholar 

  • Mazoyer J. and Rapaport I. Inducing an order on cellular automata by a grouping operation. in STACS’98, LNCS Vol. 1373: 116–127, 1998.

    Google Scholar 

  • Mazoyer J. and Terrier V. Signals on one dimensional cellular automata. To appear in Theoretical Computer Science., 1998.

    Google Scholar 

  • McCullough W. and Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.,Vol. no. 5: 115–133, 1943.

    Google Scholar 

  • Minsky M. Finite and infinite machines. Prentice Hall, 1967.

    Google Scholar 

  • Morita K. A Simple Construction Method of a Reversible Finite Automaton out of Fred-kin Gates, and its Related Model. Transactions of the IEICE,Vol. no. E: 978–984, 1990.

    Google Scholar 

  • Morita K. and Imai K. A Simple Self-Reproducing Cellular Automaton with Shape-Encoding Mechanism. Artificial Life V, 1996.

    Google Scholar 

  • Moore E. F. Machine models of self-reproduction. Proc. Symp. Appl. Math. Vol. no. 14: 17–33, 1962.

    Google Scholar 

  • Mosconi J. La constitution de la théorie des automates. Thèse d’Etat, Université Paris 1, 1989.

    Google Scholar 

  • Myhill J. The converse of Moore’s garden-of-eden theorem. Proc. AMS Vol. no. 14: 685–686, 1963.

    Google Scholar 

  • Peitgen H.-O., Rodenhausen A. and Skordev G. Self-similar Functions Generated by Cellular Automata. Research Report 426, Bremen University, 1998.

    Google Scholar 

  • Reimen N. Superposable Trellis Automata. LNCS,Vol. no. 629: 472–482, 1992.

    Google Scholar 

  • Richardson D.Tesselations with local transformations. Journal of Computer and System Sciences,Vol. no. 5: 373–388, 1972.

    Google Scholar 

  • Rogers H. Theory of Recursive Functions and Effective Computability,MIT Press, 1967.

    Google Scholar 

  • Rdka Zs. Simulations between Cellular Automata on Cayley Graphs. To appear in Theoretical Computer Science, 1998.

    Google Scholar 

  • Smith III A. Real-time language recognition by one-dimensional cellular automata. Journal of Computer and System Sciences Vol. no. 6: 233–253, 1972.

    Google Scholar 

  • Smith III A. Simple computation-universal spaces. Journal of ACM. Vol. no. 18: 339–353, 1971.

    Google Scholar 

  • Smith III A. Simple Non-trivial Self-Reproducing Machines. Proceedings of the Second Artificial Life Workshop, Santa Fe: 709–725, 1991.

    Google Scholar 

  • Sutner K. De Bruijn graphs and linear cellular automata. Complex Systems Vol.5 no. 1: 19–30, 1991.

    Google Scholar 

  • Thatcher J. Universality in the von Neumann cellular model. Tech. Report 03105–30-T, University of Michigan, 1964.

    Google Scholar 

  • Turing A. On computable numbers, with an application to the Entscheidungsproblem. P. London Math. Soc. Vol. no. 42: 230–265, 1936.

    Google Scholar 

  • von Neumann J. The General and Logical Theory of Automata. in Collected Works, Vol. 5, Taub. A., Eds, New York: Pergamon Press: 288–328, 1963.

    Google Scholar 

  • von Neumann J. The Computer and the Brain,Yale University Press, New Haven, 1958.

    Google Scholar 

  • von Neumann J. Theory of Self-reproducing automata,University of Illinois Press, Chicago, 1966.

    Google Scholar 

  • von Neumann J. Probabilistic logic and the synthesis of reliable organisms from unreliable components,Shannon and McCarthy Eds, Princeton University Press, Princeton, 1956.

    Google Scholar 

  • Wagner K. and Wechsung G. Computational Complexity. Reidel, 1986.

    Google Scholar 

  • Wiener N. Cybernetics, or control and communication in the animal and the machine, M.I.T. Press, New Haven, 1961.

    Book  MATH  Google Scholar 

  • Willson S. Cellular automata can generate fractals. Discrete Applied Mathematics,Vol. no. 8: 91–99, 1984.

    Google Scholar 

  • Wolfram S. Twenty problems in the theory of cellular automata. Physica Scripta Vol. no. 79: 170–183, 1985.

    Google Scholar 

  • Wolfram S. Theory and Applications of Cellular Automata,World Scientific, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Delorme, M. (1999). An Introduction to Cellular Automata. In: Delorme, M., Mazoyer, J. (eds) Cellular Automata. Mathematics and Its Applications, vol 460. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9153-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9153-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5143-1

  • Online ISBN: 978-94-015-9153-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics