Skip to main content

Wave Propagation Phenomena in the Theory of Sedimentation

Mathematical theory of gravitational solid-liquid separation processes

  • Chapter
Numerical Methods for Wave Propagation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 47))

Abstract

Sedimentation processes are employed in a variety of industrial applications in which a suspension, a mixture of a fluid and fine solid particles, is separated into its solid and liquid components under the influence of gravity. In the mining industry, large vessels, so-called thickeners of up to 100 m in diameter and 6 m in depth with a slightly conical bottom, are used for the settling of the suspension and for the consolidation of the sediment. In a continuous thickener, the control operations (feeding of fresh suspension, discharge of the concentrated sediment at the bottom and overflow of the supernatant clear liquid) take place continuously. Fig. 1 shows a schematic cross-section of a continuous thickener [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anestis, G. and Schneider, W. (1983) Application of the Theory of Kinematic Waves to Centrifugation, Ingenieur-Archiv 53, pp. 399–407

    Article  Google Scholar 

  2. Ballou, D.P. (1970) Solutions to Non-linear Hyperbolic Cauchy Problems without Convexity ConditionsTrans. Amer. Math. Soc. 152, pp. 441–460

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardos, C., Le Roux, A.Y. and Nedelec, J.C. (1979) First Order Quasilinear Equations with Boundary Conditions, Comm. Partial Diff. Eqns. 4 (9), pp. 1017–1034

    MATH  Google Scholar 

  4. Bascur, O. (1976) Modelo fenomenologico de suspensiones en sedimentación, Engineering Thesis, University of Concepción.

    Google Scholar 

  5. Becker, R. (1982) Espesamiento continuo, diseno y simulación de espesadores, Engineering Thesis, University of Concepción.

    Google Scholar 

  6. Been, K. and Sills, G.C. (1981) Self-Weight Consolidation of Soft Soils: An Experimental and Theoretical Study, Geotechnique 31, 519–535 (1981).

    Google Scholar 

  7. Bürger, R. (1996) Ein Anfangs-Randwertproblem einer quasilinearen entarteten parabolischen Gleichung in der Theorie der Sedimentation mit Kompression, Doctoral Thesis, University of Stuttgart.

    Google Scholar 

  8. Bürger, R. (1997) A Mathematical Model for Sedimentation with Compression, Proceedings of the Conference on Analysis, Numerics and Applications of Differential and Integral Equations, Stuttgart, October 9–11, 1996. Addison-Wesley-Longman; to appear.

    Google Scholar 

  9. Bürger, R. and Concha, F. (1997) Numerical Simulation of Continuous Sedimentation of Flocculated Suspensions, Proceedings of Numerical Modelling in Continuum Mechanics: The Third Summer Conference, Prague, Czech Republic, September 8–11, 1997; to appear.

    Google Scholar 

  10. Bürger, R. and Concha, F. (1997) Simulation of the Transient Behaviour of Flocculated Suspensions in a Continuous Thickener, Proceedings of the XX International Mineral Processing Congress, Aachen, Germany, September 21–26, 1997, GDMB, Clausthal-Zellerfeld, Vol. 4, pp. 91–101.

    Google Scholar 

  11. Bürger, R. and Concha, F. (1997) Mathematical Model and Numerical Simulation of the Settling of Flocculated Suspensions, Preprint 97/28, Sonderforschungsbereich 404, University of Stuttgart.

    Google Scholar 

  12. Bürger, R. and Wendland, W.L. (1997) Existence, Uniqueness and Stability of Generalized Solutions of an Initial-Boundary Value Problem for a Degenerating Quasi-linear Parabolic Equation, Preprint 97/39, Sonderforschungsbereich 404, University of Stuttgart; to appear in J. Math. Anal. Appl.

    Google Scholar 

  13. Bürger, R. and Wendland, W.L. (1997) Entropy Boundary and Jump Conditions in the Theory of Sedimentation with Compression, Preprint 97/40, Sonderforschungsbereich 404, University of Stuttgart; to appear in Math. Meth. Appl. Sci.

    Google Scholar 

  14. Bürger, R. and Wendland, W.L. (1997) Mathematical Problems in Sedimentation, Proceedings of Numerical Modelling in Continuum Mechanics: The Third Summer ConferencePrague, Czech Republic, September 8–11, 1997; to appear.

    Google Scholar 

  15. Bustos, M.C. and Concha, F. (1988) On the Construction of Global Weak Solutions in the Kynch Theory of Sedimentation, Math. Meth. Appl. Sci. 10, pp. 245–264

    Article  MathSciNet  MATH  Google Scholar 

  16. Bustos, M.C. and Concha, F. (1996) Kynch Theory of Sedimentation, Chapter 2 (pp. 7–49 ) in Tory, E. (ed.), Sedimentation of Small Particles in a Viscous Fluid, Computational Mechanics Publications, Southampton, UK.

    Google Scholar 

  17. Bustos, M.C., Concha, F. and Wendland, W.L. (1990) Global Weak Solutions to the Problem of Continuous Sedimentation of an Ideal Suspension, Math. Meth. Appl. Sci. 13, pp. 1–22

    Article  MathSciNet  MATH  Google Scholar 

  18. Bustos, M.C., Paiva, F. and Wendland, W.L. (1990) Control of Continuous Sedimentation of Ideal Suspensions as an Initial and Boundary Value Problem, Math. Meth. Appl. Sci. 12, pp. 533–548

    Article  MathSciNet  MATH  Google Scholar 

  19. Bustos, M.C., Paiva, F. and Wendland, W.L. (1996) Entropy Boundary Conditions in the Theory of Sedimentation of Ideal Suspensions, Math. Meth. Appl. Sci. 19,pp. 679–697

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, K.S. (1981) Asymptotic Behaviour of Solutions of a Conservation Law without Convexity Conditions, J. Diff. Eqns. 40, pp. 343–376

    Article  MATH  Google Scholar 

  21. Cheng, K.S. (1983) Constructing Solutions of a Single Conservation Law, J. Diff. Eqns. 49, pp. 344–358

    Article  MATH  Google Scholar 

  22. Cheng, K.S. (1986) A Regularity Theorem for a Nonconvex Scalar Conservation Law, J. Diff. Eqns. 61, pp. 79–127

    Article  MATH  Google Scholar 

  23. Coe, H.S. and Clevenger, G.H. (1916) Methods for Determining the Capacity of Slimesettling Tanks, Trans. AIME 55, pp. 356–385

    Google Scholar 

  24. Concha, F. and Barrientos, A. (1993) A Critical Review of Thickener Design Methods, KONA No. 11, pp. 79–104

    Google Scholar 

  25. Concha, F., Barrientos, A. and Bustos, M.C. (1995) Phenomenological Model of High Capacity Thickening, Proceedings of the 19th International Mineral Processing Congress (XIX IMPC), San Francisco, USA, November 1995, Ch. 14, pp. 75–79

    Google Scholar 

  26. Concha, F. and Bascur, O. (1977) Phenomenological Model of Sedimentation. Proceedings of the 12th International Mineral Processing Congress (XII IMPC), São Paulo, Brazil, 4, pp. 29–46

    Google Scholar 

  27. Concha, F. and Bustos, M.C. (1991) Settling Velocities of Particulate Systems: 6. Kynch Sedimentation Processes: Batch Settling, Int. J. Min. Proc. 32, pp. 193–212

    Article  Google Scholar 

  28. Concha, F. and Bustos, M.C. (1992) Settling Velocities of Particulate Systems: 7. Kynch Sedimentation Processes: Continuous Thickening, Int. J. Min. Proc. 34, pp. 33–51

    Article  Google Scholar 

  29. Concha, F., Bustos, M.C. and Barrientos, A. (1996) Phenomenological Theory of Sedimentation, Chapter 3 (pp. 51–96 ) in Tory, E. (ed.), Sedimentation of Small Particles in a Viscous Fluid, Computational Mechanics Publications, Southampton, UK.

    Google Scholar 

  30. Concha, F., Lee, C.H. and Austin, L.G. (1992) Settling Velocities of Particulate Systems: 8. Batch Sedimentation of Polydispersed Suspensions of Spheres, Int. J. Min. Proc. 35, pp. 159–175

    Article  Google Scholar 

  31. Dafermos, C.M. (1972) Polygonal Approximations of Solutions of the Initial Value Problem for a Conservation Law, J. Math. Anal. Appl. 38, pp. 33–41

    Article  MathSciNet  MATH  Google Scholar 

  32. Davis, R.H. and Acrivos, A. (1985) Sedimentation of Noncolloidal Particles at Low Reynolds Numbers, Ann. Rev. Fluid Mech. 17, pp. 91–118

    Article  Google Scholar 

  33. Dubois, F. and Le Floch, P. (1988) Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws, Journal of Diff. Eqns 71, pp. 93–122

    Article  MATH  Google Scholar 

  34. Eckert, W.F., Masliyah, J.H., Gray, M.R. and Fedorak, P.M. (1996) Prediction of Sedimentation and Consolidation, AIChE J. 42, No. 4, pp. 960–972

    Article  Google Scholar 

  35. Evje, S. and Hvistendahl Karlsen, K. (1997) Viscous Splitting Approximation of Mixed Hyperbolic-Parabolic Convection-Diffusion Equations, Report, Institut Mittag-Leffler, Stockholm, Sweden.

    Google Scholar 

  36. Evje, S., Hvistendahl Karlsen, K., Lie, K.-A. and Risebro, N.H. (1997) Front Tracking and Operator Splitting for Nonlinear Degenerate Convection-Diffusion Equations, Report, Institut Mittag-Lefer, Stockholm, Sweden.

    Google Scholar 

  37. Green, M.D., Eberl, M. and Landman, K.A. (1996) Compressive Yield Stress of Flocculated Suspensions: Determination via Experiment, AIChE J. 42, No. 8, pp. 2308–2318

    Article  Google Scholar 

  38. Kluwick, A. (1977) Kinematische Wellen, Acta Mechanica 26, pp. 15–46

    Article  MATH  Google Scholar 

  39. Kluwick, A. (1983) Small Amplitude Finite-Rate Waves in Suspensions of Particles in Fluids, ZAMM 63, pp. 161–171

    Article  MATH  Google Scholar 

  40. Kruzkov, S.N. (1970) First Order Quasilinear Equations in Several Independent Variables, Math. USSR Sbornik, 10, No. 2, pp. 217–243

    Article  Google Scholar 

  41. Kunik, M. (1989) Über die schwachen Lösungen skalarer hyperbolischer Erhaltungsgleichungen in der Theorie der Sedimentation, Doctoral Thesis, University of Stuttgart.

    Google Scholar 

  42. Kunik, M. (1993) A Solution Formula for a Non-Convex Scalar Hyperbolic Conservation Law with Monotone Initial Data, Math. Meth. Appl. Sci. 16, pp. 895–902

    Article  MathSciNet  MATH  Google Scholar 

  43. Kunik, M., Wendland, W.L., Paiva, F. and Bustos, M.C. (1993) The Polygonal Approximation in the Kynch Theory of Sedimentation, Preprint 93–07, Department of Mathematical Engineering, University of Concepción.

    Google Scholar 

  44. Kynch, G.J. (1952) A Theory of Sedimentation, Trans. Farad. Soc. 48, pp. 166–176

    Article  Google Scholar 

  45. Landman, K.A. and White, L.R. (1992) Determination of the Hindered Settling Factor for Flocculated Suspensions, AIChE J. 38, No. 2, pp. 184–192

    Article  Google Scholar 

  46. Lax, P.D. (1957) Hyperbolic Systems of Conservation Laws II, Comm. Pure Appl. Math. 10 pp. 537–566

    Google Scholar 

  47. Le Veque, R.J. (1992) Numerical Methods for Conservation Laws, Second Ed., Birkhäuser Verlag, Basel.

    Book  Google Scholar 

  48. Malek, J., Necas, J., Rokyta, M. and Rnzicka, M. (1996) Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, London.

    MATH  Google Scholar 

  49. Mishler, R.T. (1912) Settling Slimes at the Tigre MillEng. Mining J. 94 (14), pp. 643–646

    Google Scholar 

  50. Mishler, R.T. (1918) Methods for Determining the Capacity of Slime-Settling Tanks, Trans. AIME 58, pp.102 ff

    Google Scholar 

  51. Nessyahu, H. and Tadmor, E. (1990) Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws, J. Comp. Phys. 87, pp. 408–463

    Article  MathSciNet  MATH  Google Scholar 

  52. Paiva, F. and Bustos, M.C. (1994) Existence of the Entropy Solution for the Simulation of the Sedimentation in a Continuous Thickener, Revista Notas, Sociedad Matematica de Chile, XII, XIII (1), pp. 47–56

    Google Scholar 

  53. Richardson, J.F. and Zaki, W.N. (1954) The Sedimentation of Uniform Spheres under Conditions of Viscous Flow, Chem. Engrg. Science 3, pp. 65–73

    Article  Google Scholar 

  54. Schaflinger, U. (1985) Experiments on Sedimentation Beneath Downward-Facing Inclined Walls, Int. J. Multiphase Flow 11, pp. 189–199

    Article  Google Scholar 

  55. Schaflinger, U. (1985) Influence of Non-Uniform Particle Size on Settling Beneath Downward-Facing Inclined Walls, Int. J. Multiphase Flow 11, pp. 783–796

    Article  Google Scholar 

  56. Schneider, W. (1982) Kinematic-Wave Theory of Sedimentation Beneath Inclined Walls, J. Fluid Mech. 120, pp. 323–346

    Article  MATH  Google Scholar 

  57. Schneider, W. (1985) Kinematic Wave Description of Sedimentation and Centrifugation Processes, pp. 326–337 in: Meier, G.E.A. and Obermaier, F. (eds.), Flow of Real Fluids, Lecture Notes in Physics, Springer Verlag, Berlin.

    Google Scholar 

  58. Tiller, F.M., Hsyung, N.B. and Cong, D.Z. (1995) Role of Porosity in Filtration: XII. Filtration with Sedimentation, AIChE J. 41, No. 5, pp. 1153–1164

    Article  Google Scholar 

  59. Ungarish, M. (1993) Hydrodynamics of Suspensions, Springer-Verlag.

    Google Scholar 

  60. Vol’pert, A.I. and Hudjaev, S.I. (1969) Cauchy’s Problem for Degenerate Second Order Quasilinear Parabolic Equations, Math. USSR Sbornik 7, No. 3, pp. 365–387

    Article  Google Scholar 

  61. Wu, Z. (1982) A Note on the First Boundary Value Problem for Quasilinear Degenerate Parabolic Equations, Acta Math. Sc. 4, No. 2, pp. 361–373

    Google Scholar 

  62. Wu, Z. (1983) A Boundary Value Problem for Quasilinear Degenerate Parabolic Equations, MRC Technical Summary Report 2484, University of Wisconsin, USA.

    Google Scholar 

  63. Wu, Z. and Wang, J. (1982) Some Results on Quasilinear Degenerate Parabolic Equations Of Second Order, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 3, Science Press, Beijing, Gordon and Breach, Science Publishers Inc., pp. 1593–1609

    Google Scholar 

  64. Wu, Z. and Yin, J. (1989) Some Properties of Functions in BV. and Their Applications to the Uniqueness of Solutions for Degenerate Quasilinear Parabolic Equations, Northeastern Math. J. 5 (4), pp. 395–422

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Concha, F., Bürger, R. (1998). Wave Propagation Phenomena in the Theory of Sedimentation. In: Toro, E.F., Clarke, J.F. (eds) Numerical Methods for Wave Propagation. Fluid Mechanics and Its Applications, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9137-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9137-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5047-2

  • Online ISBN: 978-94-015-9137-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics