Skip to main content

Primitive, Conservative and Adaptive Schemes for Hyperbolic Conservation Laws

  • Chapter
Numerical Methods for Wave Propagation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 47))

Abstract

For the last two or three decades, it has become an accepted practice to utilise conservative methods when solving numerically hyperbolic conservation laws. Shock waves are the solution features that demand the utilisation of conservative methods. Practical computational experience shows that the use of a non-conservative method results in the wrong shock strength and thus the wrong propagation speed. To some extent an exception is the Random Choice Method (RCM) of Glimm (Glimm, 1965). This method is non-conservative and yet it gives the correct shock strength and, on average the correct propagation speed. Theoretically, Lax and Wendroff proved in 1960 (Lax and Wendroff, 1960) that if a conservative method converges, it does so to a weak solution of the conservation laws. Today it is known, (Harten, 1983), that if the scheme also satisfies an entropy condition, then the converged solution is the physical weak solution. Hence, there are very good reasons for utilising conservative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abgrall, R. (1996). How to Prevent Pressure Oscillations in Multicomponent Flow Cal culations: A Quasiconservative Approach. J. Comput. Phys., 125:150–160, 1996.

    Google Scholar 

  • Arora, M. and Roe, P. L. (1997). A Well-Behaved TVD Limiter for High-Resolution Calculations of Unsteady Flow. J. Comput. Phys., 132: 3–11, 1997.

    Google Scholar 

  • Ben-Artzi M. and Falcovitz J (1984). A Second Order Godunov-Type Scheme for Compressible Fluid Dynamics. J. Comput. Phys.,55:1–32, 1984.

    Google Scholar 

  • Chorin, A. J. (1967). A Numerical Method for Solving Viscous Flow Problems. J. Comput. Phys., 2: 12–26, 1967.

    Google Scholar 

  • Clarke, J. F., Karni, S., Quirk, J. J., Simmons, L. G., Roe, P. L. and Toro, E. F. (1993). Numerical Computation of Two-Dimensional, Unsteady Detonation Waves in High Energy Solids. J. Comput. Phys., 106: 215–233, 1993.

    Google Scholar 

  • Colella, P. (1985). A Direct Eulerian MUSCL Scheme for Gas Dynamics SIAM J. Sci. Stat. Comput., 6: 104–117, 1985.

    MathSciNet  Google Scholar 

  • Courant, R., Isaacson, E. and Rees, M. (1952). On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences. Comm. Pure. Appl. Math., 5: 243–255, 1952.

    MathSciNet  Google Scholar 

  • Glimm, J. (1965). Solution in the Large for Nonlinear Hyperbolic Systems of Equations. Comm. Pure. Appl. Math., 18: 697–715, 1965.

    Google Scholar 

  • Harten, A. (1983). High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys., 49: 357–393, 1983.

    Google Scholar 

  • Harten, A., Lax, P. D. and van Leer, B. (1983). On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review,25(1):35–61, 1983.

    Google Scholar 

  • Hirsch, C. (1990). Numerical Computation of Internal and External Flows, Vol. II: Computational Methods for Inviscid and Viscous Flows Wiley, 1990.

    Google Scholar 

  • Hou, T. Y. and LeFloch, P. (1994). Why Non-Conservative Schemes Converge to the Wrong Solutions: Error Analysis. Math. of Comput., 62: 497–530, 1994.

    Google Scholar 

  • Ivings, M. J., Causon, D. M. and Toro, E. F. (1996). On Hybrid High-Resolution Upwind Methods for Multicomponent Flows. ZAMM, 77, Issue 9: 645–668, 1997.

    Google Scholar 

  • Karni, S. (1992). Viscous Shock Profiles and Primitive Formulations. SIAM J. Numer. Anal,29(6):1592–1609, 1992.

    Google Scholar 

  • Karni, S. (1994). Multicomponent Flow Calculations Using a Consistent Primitive Algorithm. J. Comput. Phys., 112 (1): 31–43, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  • Karni, S. (1995). Hybrid Multifluid Algorithms. Technical Report 95–001, Courant Mathematics and Computing Laboratory, 1995.

    Google Scholar 

  • Lax P. D. and Wendroff, B. (1960). Systems of Conservation Laws. Comm. Pure Appl. Math., 13: 217–237, 1960.

    Google Scholar 

  • NAG Library (1996). NAG Library Routines, Mark 18, Routines DO3PWF and DO3PXF, 1996.

    Google Scholar 

  • Osher, S. and Solomon, F. (1982). Upwind Difference Schemes for Hyperbolic Conservation Laws. Math. Comp., 38, 158: 339–374, 1982.

    Google Scholar 

  • Roe, P. L. (1983). Some Contributions to the Modelling of Discontinuous Flows. In Proceedings of the SIAM/AMS Seminar, San Diego, 1983.

    Google Scholar 

  • Stoker, J. J. (1992). Water Waves. The Mathematical Theory with Applications. John Wiley and Sons, 1992.

    Google Scholar 

  • Sweby, P. K. (1982). Shock Capturing Schemes. PhD thesis, Department of Mathematics, University of Reading, UK, 1982.

    Google Scholar 

  • Sweby, P. K. (1984). High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal., 21: 995–1011, 1984.

    MathSciNet  Google Scholar 

  • Toro, E. F. (1989). A Weighted Average Flux Method for Hyperbolic Conservation Laws. Proc. Roy. Soc. London, A423: 401–418, 1989.

    Google Scholar 

  • Toro, E. F. (1991). A Linearised Riemann Solver for the Time-Dependent Euler Equations of Gas Dynamics. Proc. Roy. Soc. London, A434: 683–693, 1991.

    Google Scholar 

  • Toro, E. F. (1994). Defects of Conservative Approaches and Adaptive Primitive-Conservative Schemes for Computing Solutions to Hyperbolic Conservation Laws. Technical Report MMU 9401, Department of Mathematics and Physics, Manchester Metropolitan University, UK, 1994.

    Google Scholar 

  • Toro, E. F. (1995a). Direct Riemann Solvers for the Time-Dependent Euler Equations. Shock Waves, 5: 75–80, 1995.

    Google Scholar 

  • Toro, E. F. (1995b). MUSCL-Type Primitive Variable Schemes. Technical Report MMU9501, Department of Mathematics and Physics, Manchester Metropolitan University, UK, 1995.

    Google Scholar 

  • Toro, E. F. (1995c). On Adaptive Primitive-Conservative Schemes for Conservation Laws. In M. M. Hafez, editor, Sixth International Symposium on Computational Fluid Dynamics: A Collection of Technical Papers, volume 3, pages 1288–1293, Lake Tahoe, Nevada, USA, September 4–8, 1995.

    Google Scholar 

  • Toro, E. F. (1995d). Some IVPs for Which Conservative Methods Fail Miserably. In M. M. Hafez, editor, Sixth International Symposium on Computational Fluid Dynamics: A Collection of Technical Papers, volume 3, pages 1294–1299, Lake Tahoe, Nevada, USA, September 4–8, 1995.

    Google Scholar 

  • Toro, E. F. (1997a). Anomalies of Conservative Methods: Analysis and Numerical Evidence. Submitted, 1997.

    Google Scholar 

  • Toro, E. F. (1997b). Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, 1997. Berlin, Heidelberg.

    Google Scholar 

  • Toro, E. F. and Roe, P. L. (1987). A Hybridised High-Order Random Choice Method for Quasi-Linear Hyperbolic Systems. In Grönig, editor, Proc. 16th Intern. Symp. on Shock Tubes and Waves, pages 701–708, Aachen, Germany, July 1987.

    Google Scholar 

  • van Leer, B. (1976). MUSCL, A New Approach to Numerical Gas Dynamics. In Computing in Plasma Physics and Astrophysics, Max-Planck-Institut für Plasma Physik, Garchung, Germany, April 1976.

    Google Scholar 

  • van Leer, B. (1984). On the Relation Between the Upwind-Differencing Schemes of Godunov, Enguist-Osher and Roe. SIAM J. Sci. Stat. Comput.,5(1):1–20, 1985.

    Google Scholar 

  • Woodward, P. and Colella, P. (1984). The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks. J. Comput. Phys., 54: 115–173, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Toro, E.F. (1998). Primitive, Conservative and Adaptive Schemes for Hyperbolic Conservation Laws. In: Toro, E.F., Clarke, J.F. (eds) Numerical Methods for Wave Propagation. Fluid Mechanics and Its Applications, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9137-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9137-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5047-2

  • Online ISBN: 978-94-015-9137-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics