Skip to main content

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 32))

  • 797 Accesses

Abstract

Insertion mutagenesis is defined as the insertion of DNA of known sequence into a gene. In plants there are two types of insertion elements that have been used for this purpose: transposons and T-DNA. Numerous genes have been isolated from species such as Zea mays and Antirrhinum majus that harbour endogenous transposable elements. In species such as Arabidopsis thaliana, heterologous transposons have been used to mutagenize genes (Bhatt et al., 1996). Transposon mutagenesis will be described elsewhere in this volume (Chapter 19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbacher, R.A., M.-T. Hauser, K.A. Feldmann and P.N. Benfey. 1995. The SABRE gene is required for normal cell expansion in Arabidopsis. Genes Devel. 9: 330–340.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, M. and A.R. Cashmore. 1993. The HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 366: 162–164.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold, N., J. Ellis and G. Pelletier. 1993. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris. 316: 1188–1193.

    Google Scholar 

  • Bennett, M.J., H. Green, S. Ward, S.R. May, M. Walker, B. Schulz and K.A. Feldmann. 1996. AUX1 encodes a novel membrane protein which regulates auxin-dependent root growth in Arabidopsis. Science. 273: 948–950.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S., E. Bell and J.E. Mullet. 1996. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol. 111: 525–531.

    PubMed  CAS  Google Scholar 

  • Bhatt, A.M., T. Page, E.J.R. Lawson, C. Lister and C. Dean. 1996. Use of Ac as an insertional mutagen. Plant J. 9: 935–945.

    Article  PubMed  CAS  Google Scholar 

  • Budar, F., L. Thia-toong, M. Van Montagu and J.-P. Hernalsteens. 1986. Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics 114: 303–313.

    PubMed  CAS  Google Scholar 

  • Callos, J.D., M. DiRado, B. Xu, F.J. Behringer, B.M. Link and J.I. Medford. 1994. The forever young gene encodes an oxidoreductase required for proper development of the Arabidopsis vegetative shoot apex. Plant J. 6: 835–847.

    Article  PubMed  CAS  Google Scholar 

  • Castle, L. and D.W. Meinke. 1994. A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell. 6: 25–41.

    PubMed  CAS  Google Scholar 

  • Castle, L., D. Errampalli, T.L. Atherton, L.H. Franzmann, E.S. Yoon and D.W. Meinke. 1993. Genetic and molecular characterization of embryonic mutants identified following seed transformation of Arabidopsis. Mol Gen Genet. 241: 504–541.

    Article  CAS  Google Scholar 

  • Chang, S.-S., S.-K. Park, B.C. Kim, B.J. Kang, D.U. Kim and H.-G. Nam. 1994. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J. 5: 551–558.

    Article  CAS  Google Scholar 

  • Chaudhury, A.M., M. Lavithis, P.E. Taylor, S. Craig, M.B. Singh, E.R. Signer, R.B. Knox and E.S. Dennis. 1994. Genetic control of male fertility in Arabidopsis thaliana: structural analysis of premeiotic developmental mutants. Sex Plant Reprod. 7: 17–28.

    Article  Google Scholar 

  • Chiang, H.-H., I. Hwang and H. Goodman. 1995. Isolation of the Arabidopsis GA4 locus. Plant Cell. 7: 195–201.

    PubMed  CAS  Google Scholar 

  • Choe, S. and K.A. Feldmann. T-DNA mediated gene tagging. In: Transgenic Plant Research (ed. K. Lindsey). Harwood Academic Publishers. (in press)

    Google Scholar 

  • Choe, S., B.P. Dilkes, S. Fujioka, S. Takatsuto, A. Sakurai and K.A. Feldmann. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: (in press).

    Google Scholar 

  • Christianson, M.L. and D.A. Warnick. 1985. Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev Biol. 112: 494–497.

    CAS  Google Scholar 

  • Chyi, Y.-S., R.A. Jorgensen, D. Goldstein, S.D. Tanksley and F. Loaiza-Figueroa. 1986. Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet. 204: 64–69.

    Article  CAS  Google Scholar 

  • Coomber, S.A. and K.A. Feldmann. 1993. Gene tagging in transgenic plants. In: Transgenic Plants, vol. 1: Engineering and Utilization, pp. 225–240 (eds S.D. Kung and R. Wu). New York: Academic Press.

    Google Scholar 

  • De Cleene, M. and J. Deley. 1976. The host range of crown gall. Bot Rev. 42: 389–466.

    Article  Google Scholar 

  • Deng, M.-D., S. Peng, and B. Lemieux. 1996. Genomic and cDNA sequences of the CER1-like gene of Arabidopsis thaliana derived from a plant DNA/T-DNA insertion junction. Plant Physiol. 110: 1436.

    Google Scholar 

  • Deng, X.-W., M. Matsui, N. Wei, D. Wagner, A.M. Chu, K.A. Feldmann and P.H. Quail. 1992. COP1, an Arabidopsis photomorphogenic regulatory gene, encodes a novel protein with both a Zn-binding motif and a domain homologous to the b-subunit of trimeric G-proteins. Cell. 71: 791–801.

    Article  PubMed  CAS  Google Scholar 

  • Deroles, S.C. and R.C. Gardner. 1988. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol. 11: 355–364.

    Article  CAS  Google Scholar 

  • Feldmann, K.A. 1991. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1: 71–82.

    Article  CAS  Google Scholar 

  • Feldmann, K.A. 1992a. T-DNA insertion mutagenesis in Arabidopsis, seed infection/transformation. In: Methods in Arabidopsis Research, pp. 274–289 (eds C. Koncz, N.-H. Chua and J. Schell). London: World Scientific.

    Google Scholar 

  • Feldmann, K.A. 1992b. In vitro culture of Arabidopsis thaliana. In: Biotechnology in Agriculture and Forestry, vol. 20: High-Tech and Micropropagation, IV, pp. 471–483 (ed. Y.P.S. Bajaj). New York: Springer-Verlag.

    Google Scholar 

  • Feldmann, K.A. 1995. Seed transformation in Arabidopsis thaliana. In: Gene Transfer to Plants, pp. 11–18 (ed. I. Potrykus). New York: Springer-Verlag.

    Google Scholar 

  • Feldmann, K.A., D.A. Coury and M.L. Christianson. 1997. Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 147: 1411–1422.

    PubMed  CAS  Google Scholar 

  • Feldmann, K.A., R. Malmberg and C. Dean. 1994. Mutagenesis in Arabidopsis. In: Arabidopsis, pp. 137–172 (eds E. Meyerowitz and C. Somerville). New York: Cold Spring Harbor, Press.

    Google Scholar 

  • Feldmann, K.A. and M.D. Marks. 1986. Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Sci. 47: 63–69.

    Article  Google Scholar 

  • Feldmann, K.A. and M.D. Marks. 1987. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana, a non-tissue culture approach. Mol Gen Genet. 208: 1–9.

    Article  CAS  Google Scholar 

  • Feldmann, K.A., M.D. Marks, M.L. Christianson and R.S. Quatrano. 1989. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science. 243: 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  • Fortsthoefel, N.R., Y. Wu, B. Schulz, M.J. Bennett and K.A. Feldmann. 1992. T-DNA insertion mutagenesis in Arabidopsis: prospects and perspectives. Aust J Plant Physiol. 19: 353–366.

    Article  Google Scholar 

  • Franzmann, L.H., E.S. Yoon and D.W. Meinke. 1995. Saturating the genetic map of Arabidopsis thaliana with embryonic mutations. Plant J. 7: 341–350.

    Article  CAS  Google Scholar 

  • Garbers, C., A. DeLong, J. Deruere, P. Bernasconi and D. Soll. 1996. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15: 2115–2124.

    CAS  Google Scholar 

  • Gresshoff P.M. and C.H. Doy. 1972. Haploid Arabidopsis thaliana callus and plants from anther cultures. Aust J Biol Sci. 25: 259–264.

    Google Scholar 

  • Hamill, J.D. 1993. Alterations in auxin and cytokinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria: a review. Aust J Plant Physiol. 20: 405–423.

    Article  CAS  Google Scholar 

  • Hannoufa, A., V. Negruk, G. Eisner and B. Lemieux. 1996. The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. Plant J. 10: 459–467.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., I. Czaja, H. Lubenow, J. Schell and R. Walden. 1992. Activation of a plant gene by T-DNA tragging: auxin-independent growth in vitro. Science. 258: 1350–1353.

    Article  CAS  Google Scholar 

  • He, C., U. Tiriapur, M. Cresti, M. Peja, D.E. Crone and J.P. Mascarenhas. 1996. An Arabidopsis mutant showing aberrations in male meiosis. Sex Plant Reprod. 9: 54–57.

    Article  Google Scholar 

  • Herman, L., A. Jacobs, M. Van Montagu and A. Depicker. 1990. Plant chromosome/marker gene fusion assay for the study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224: 248–256.

    Article  PubMed  CAS  Google Scholar 

  • Hiei, Y., S. Ohta, T. Komari and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Holding, D.R., R.J. McKenzie and S.A. Coomber. 1994. Genetic and structural analysis of five Arabidopsis mutants with abnormal root morphology generated by the seed transformation method. Ann Bot. 74: 193–204.

    Article  Google Scholar 

  • Hooykaas, P.J.J. and A.G.M. Beijersbergen. 1994. The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol. 32: 157–179.

    Article  CAS  Google Scholar 

  • Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari and T. Kumashiro. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14: 745–750.

    Article  CAS  Google Scholar 

  • Jenks, M.A., A.M. Rashotte, H.A. Tuttle and K.A. Feldmann. 1996. Mutants in Arabidopsis with altered leaf morphology and epicuticular wax. Plant Physiol. 110: 377–385.

    PubMed  CAS  Google Scholar 

  • Jofuku, K.D., B.G.W. den Boer, M. Van Montagu and J.K. Okamuro. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 6: 1211–1225.

    PubMed  CAS  Google Scholar 

  • Katavic, V., G.W. Haughn, D. Reed, M. Martin and L. Kunst. 1994. In planta transformation of Arabidopsis thaliana. Mol Gen Genet. 245: 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Kieber, J.J., M. Rothenberg, G. Roman, K.A. Feldmann and J.R. Ecker. 1993. The ethylene response pathway in Arabidopsis thaliana is negatively regulated by CTR1, a predicted member of the Raf family of protein kinases. Cell. 72: 427–441.

    Article  PubMed  CAS  Google Scholar 

  • Klucher, K.M., H. Chow, L. Reiser and R.L. Fischer. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2.Plant Cell. 8: 137–153.

    PubMed  CAS  Google Scholar 

  • Koncz, C., N. Martini, R. Mayerhofer, Z. Koncz-Kalman, H. Korber, G.P. Redei and J. Schell. 1989. High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA. 86: 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, C., R. Mayerhofer, Z. Koncz-Kalman, C. Nawrath, B. Reiss, G.P. Redei and J. Schell. 1990. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 9: 1337–1346.

    PubMed  CAS  Google Scholar 

  • Koncz, C., K. Nemeth, G.P. Redei, and J. Schell. 1992. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol. 20: 963–976.

    Article  CAS  Google Scholar 

  • LaBrie, S.R., J.Q. Wilkinson, Y.-F. Tsay, K.A. Feldmann and N.M. Crawford. 1992. Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana. Mol Gen Genet. 233: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Ledoux, L., L. Diels, M.E. Thiry, R. Hooghe, Y. Maluszynska, C. Merckaert, J.M. Piron, A.M. Ryngaert and J. Remy. 1985. Transfer of bacterial and human genes to germinating Arabidopsis thaliana. Arabidopsis Info Serv. 22: 1–11.

    Google Scholar 

  • Lee, I., M.J. Aukerman, S.L. Gore, K.N. Lohman, S.D. Michaels, L.M. Weaer, M.C. John, K.A. Feldmann and R.M. Amasino. 1994. Isolation of Luminidependens, a gene involved in the control of flowering time in Arabidopsis. Plant Cell. 6: 75–83.

    CAS  Google Scholar 

  • Lee, M. and R.L. Phillips. 1988. The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39: 413–437.

    Article  Google Scholar 

  • Lehman, A., R. Black and J.R. Ecker. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 85: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, A.M., A.R. Barnason, S.G. Rogers, M.C. Byrne, R.T. Fraley and R.B. Horsch. 1986. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science. 234: 464–466.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A., K.A. Feldmann, L. Herrera-Estrella, M. Rocha-Sosa, and P. Leon. 1996. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9: 649–658.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, S., I. Yukihiro, T. Hosoi, Y. Takahashi and Y. Machida. 1990. Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet. 224: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer, R., Z. Koncz-Kalman, C. Nawrath, G. Bakkeren, A. Crameri, K. Angelis, G.P. Redei, J. Schell, B. Hohn and C. Koncz. 1991. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10: 697–704.

    PubMed  CAS  Google Scholar 

  • McKinney, E.C., N. Ali, A. Traut, K.A. Feldmann, D.A. Belostotsky, J.A. McDowell and R.B. Meagher. 1995. Sequence based identification of T-DNA insertion mutations in Arabidopsis, actin mutants act2–1 and act4–1. Plant J. 7: 613–622.

    Article  Google Scholar 

  • McNevin, J.P., W. Woodward, A. Hannoufa, K.A. Feldmann and B. Lemieux. 1993. Isolation and characterization of Eceriferum cer. mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome. 36: 610–618.

    CAS  Google Scholar 

  • Meinke, D.W. 1992. A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science. 258: 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D.W., L.H. Franzmann, T.C. Nickle and E.C. Yeung. 1994. Leafy cotyledon mutants of Arabidopsis. Plant Cell. 6: 1049–1064.

    PubMed  CAS  Google Scholar 

  • Mooney, P.A., P.B. Goodwin, E.S. Dennis and D.J. Llewellyn. 1991. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Organ Cult. 25: 209–218.

    CAS  Google Scholar 

  • Negruk, V., P. Yang, M. Subramanian, J.P. McNevin and B. Lemieux. 1996. Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J. 9: 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Negrutiu I., M. Jacobs and D. Cachita. 1978a. Some factors controlling in vitro morphogenesis of Arabidopsis thaliana. Z Pflanzenphysiol. 86: 113–124.

    CAS  Google Scholar 

  • Negrutiu I., M. Jacobs and W. deGreef. 1978b. In vitro morphogenesis of Arabidopsis thaliana: the origin of the explant. Z Pflanzenphysiol. 90: 363–372.

    CAS  Google Scholar 

  • Norris, SR., T.R. Barrette and D. DellaPenna. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturase. Plant Cell. 7: 2139–2149.

    PubMed  CAS  Google Scholar 

  • Okuley, J., J. Lightner, K. Feldmann, N. Yadav and J. Browse. 1994. The Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 6: 147–158.

    PubMed  CAS  Google Scholar 

  • Oppenheimer, D.G., P.L. Herman, S. Sivakumaran, J. Esch and M.D. Marks. 1991. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 67: 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Peirson, B.N., H.A. Owen, K.A. Feldmann and C.A. Makaroff. 1996. Characterization of three malesterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis. Sex Plant Reprod. 9: 1–16.

    Article  Google Scholar 

  • Pepper, A., T. Delaney, T. Washburn, D. Poole and J. Chory. 1994. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell. 78: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus, I. and G. Spangenberg. 1995. Gene Transfer to Plants. Berlin: Springer.

    Google Scholar 

  • Redei, G. 1975. Arabidopsis as a genetic tool. Annu Rev Genet. 9: 111–127.

    Article  PubMed  CAS  Google Scholar 

  • Redei, G.P. 1992. A heuristic glance at the past of Arabidopsis genetics. In: Methods in Arabidopsis Research, pp. 1–15 (eds C. Koncz, N.H. Chua and J. Schell) London: World Scientific.

    Google Scholar 

  • Redei, G.P., C. Koncz and J. Schell. 1988. Transgenic Arabidopsis. In: Chromosome Structure and Function, pp. 175–200 (eds J.P. Gustafson and R. Appels). New York: Plenum Press.

    Chapter  Google Scholar 

  • Reed, J., P. Nagpal, D. Poole, M. Furuya and J. Chory. 1993. Mutations in the gene for the red far-red light receptor phytochrome-B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 5: 147–157.

    PubMed  CAS  Google Scholar 

  • Reiter, R.S., S.A. Coomber, T.M. Bourett, G.E. Bartley and P.S. Scolnik. 1994. Control of leaf and chloroplast development by the Arabidopsis gene pale cress. Plant Cell. 6: 1253–1264.

    CAS  Google Scholar 

  • Rerie, W.G., K.A. Feldmann and M.D. Marks. 1994. The Glabra2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis thaliana. Genes Devel. 8: 1388–1399.

    Article  PubMed  CAS  Google Scholar 

  • Roe, J.L., C.J. Rivin, R.A. Sessions, K.A. Feldmann and P.C. Zambryski. 1993. The TOUSLED gene in Arabidopsis encodes a protein kinase homologue and is required for leaf and flower development. Cell. 75: 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, B.W., E.C. Yeung and D.W. Meinke. 1994. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis.Development. 120: 3235–3245.

    CAS  Google Scholar 

  • Shevell, DE., W.-M. Leu, C.S. Gillmor, G. Xia, K.A. Feldmann and N-H. Chua. 1994. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell. 77: 1051–1062.

    Article  PubMed  CAS  Google Scholar 

  • Szekeres, M., K. Nemeth, Z. Koncz-Kalman, J. Mathur, A. Kauschmann, T. Altmann, G.P. Redei, F. Nagy, J. Schell and C. Koncz. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 85: 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., A. Gasch, N. Nishizawa and N.H. Chua. 1995. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Devel. 9: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Tinland, B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci. 1: 178–184.

    Article  Google Scholar 

  • Tinland, B. and B. Hohn. 1995. Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. In: Genetic Engineering: Principle and Methods, pp. 209–229 (ed. J.K. Setlow). New York: Plenum.

    Google Scholar 

  • Tsay, Y-F., J. Schroeder, K.A. Feldmann and N. Crawford. 1993. The herbicide sensitivity gene, chl1, of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 72: 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Valvekens, D., and M. Van Montagu. 1990. Spontaneous mutagenesis association with Arabidopsis root regeneration. In: Fourth International Conference on Arabidopsis Research, p. 46. Vienna, Austria.

    Google Scholar 

  • Valvekens, D., M. Van Montagu and M. Van Lijsebettens. 1988. Agrobacterium tumefaciensmediated transformation of Arabidopsis root explants using kanamycin selection. Proc Natl Acad Sci USA. 85: 5536–5540.

    Article  PubMed  CAS  Google Scholar 

  • Van Lijsebettens, M., B. den Boer, J.-P. Hernalsteens and M. Van Montagu. 1991a. Insertion mutagenesis in Arabidopsis thaliana. Plant Sci. 80: 27–37.

    Article  Google Scholar 

  • Van Lijsebettens, M., R. Vanderhaeghen and M. Van Montagu. 1991b. Insertional mutagenesis in Arabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor Appl Genet. 81: 277–284.

    Article  Google Scholar 

  • Van Lijsebettens, M., R. Vanderhaeghen, M. DeBlock, G. Bauw, R. Villarroel and M. Van Montagu. 1994. An S 18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J. 13: 3378–3388.

    PubMed  Google Scholar 

  • Vernon, D.M. and D.W. Meinke. 1994. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol. 165: 566–573.

    Article  PubMed  CAS  Google Scholar 

  • Wei, N., D.A. Chamovitz and X.-W. Deng. 1994a. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell. 78: 117–124.

    Article  CAS  Google Scholar 

  • Wei, N., S.F. Kwok, A.G. von Armin, A. Lee, T.W. McNellis, B. Piekos and X.W. Deng. 1994b. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell. 6: 629–643.

    CAS  Google Scholar 

  • Weigel, D., J. Alvarez, D.R. Smyth, M.F. Yanofsky and E.M. Meyerowitz. 1992. LEAFY controls floral meristem identity in Arabidopsis.Cell. 69: 843–859.

    Article  PubMed  CAS  Google Scholar 

  • West, MAL., K.M. Yee, J. Danao, J.L. Zimmerman, R.L. Fischer, R.B. Goldberg and J.J. Harada. 1994. LEAFY COTYLEDONl is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell. 6: 1731–1745.

    PubMed  CAS  Google Scholar 

  • Winkler, R. and K.A. Feldmann. 1996. Identifying T-DNA insertion mutants in Arabidopsis using PCR. In: Methods in Molecular Biology: Arabidopsis Protocols (eds J.M. Martinez-Zapater and J. Salinas). Zotowa, NJ, Humana Press (In press).

    Google Scholar 

  • Yadav, N., A. Wierzbicki, M. Agatier, C. Caster, L. Perez-Grau, A.J. Kinney, W.D. Hitz, J.R. Booth, B. Schweiger, K.L. Stecca, S.M. Allen, M. Blackwell, R.S. Reiter, T.J. Carlson, S. Russell, K.A. Feldmann, J. Pierce and J. Browse. 1993. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol. 103: 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Yadegari, R., G.R. de Paiva, T. Laux, A.M. Koltunow, N. Apuya, J.L. Zimmerman, R.L. Fischer, J.J. Harada, and R.B. Goldberg. 1994. Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell. 6: 1713–1729.

    PubMed  CAS  Google Scholar 

  • Yanofsky, M.F., H. Ma, J.L. Bowman, G.N. Drews, K.A. Feldmann and E.M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 346: 35–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coury, D.A., Feldmann, K.A. (1998). T-DNA Insertion Mutagenesis and the Untagged Mutants. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Somaclonal Variation and Induced Mutations in Crop Improvement. Current Plant Science and Biotechnology in Agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9125-6_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4956-8

  • Online ISBN: 978-94-015-9125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics