Skip to main content

In-vitro Techniques and Mutagenesis for the Improvement of Vegetatively Propagated Plants

  • Chapter
Somaclonal Variation and Induced Mutations in Crop Improvement

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 32))

Abstract

Conventional plant breeding is based on genetic variation and selection of the desired genotypes. The availability of genetic diversity and genetic variation is the starting point of any breeding programme. In most crops, sufficient genetic variation is present among land races, cultivars and their wild relatives. In conventional plant breeding programmes this is followed by several years of selection and field evaluation before a desired genotype is released as an improved cultivar. In many sexually propagated crops, e.g., rice, wheat, maize, barley, the genetic variability is usually recombined through hybridization. The desired recombinants are then selected from the segregating populations in the subsequent generations which are tested, multiplied and released as improved cultivars. However, a number of important crops such as banana, plantain, date palm, citrus, potato, sweet potato, pineapple, apple, and pear are propagated from vegetative parts, and are not amenable to improvement in the same manner as sexually propagated plants. Many of these plants are complex polyploids, take several years to flower and fruit, some are self-incompatible. In others, such as banana and plantain, there is little or no seed formation. Often the propagule size is too big and bulky to handle and to grow large populations. Hence, it is not possible to produce sufficiently large populations required to obtain the desired recombinant in a short duration. In these plants, mutation induction offers the possibility to alter a few characters without disrupting the genome while retaining all the other characters of clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia, B.S. 1975. Regeneration of ryegrass plants in tissue culture. Crop Sci. 15: 449–452.

    Article  Google Scholar 

  • Ahloowalia, B.S. 1976. Chromosomal changes in parasexually produced ryegrass. In: Current Chromosome Research, pp. 115–122 (eds K. Jones and P. Brandham). Amsterdam: North-Holland

    Google Scholar 

  • Ahloowalia, B.S. 1983. Spectrum of variation in somaclones of triploid ryegrass. Crop Sci. 23: 1141–1147.

    Article  Google Scholar 

  • Ahloowalia, B.S. 1986. Limitations to the use of somaclonal variation in crop improvement. In: Somaclonal Variation and Crop Improvement. pp. 14–27 (ed. J. Semal). Martinus Niihoff

    Google Scholar 

  • Ahloowalia, B.S. 1990. In vitro radiation induced mutagenesis in potato. In: The Impact of Biotechnology in Agriculture, pp. 39–46 (eds R.S. Sangwan and B.S. Sangwan). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Ahloowalia, B.S. 1992. In vitro mutation and multiplication of chrysanthemum cultivars. Farm Food. 2: 28–29.

    Google Scholar 

  • Ahloowalia, B.S. 1994. Production and performance of potato mini-tubers. Euphytica. 75: 1163–172.

    Article  Google Scholar 

  • Ahloowalia, B.S. 1995. In vitro mutagenesis for the improvement of vegetatively propagated plants. In: Proceedings, ‘Induced Mutations and Molecular Techniques for Crop Improvement’, pp. 531–541. International Symposium, IAEA and Food Agriculture Organization of the United Nations, IAEA SM–340, Vienna.

    Google Scholar 

  • Anonymous. 1977. Manual on Mutation Breeding, 2nd edn. Vienna: International Atomic Energy Agency, Tech. Rep. Ser. No. 119.

    Google Scholar 

  • Behnke, M. 1979. Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants. Theor Appl Genet. 55: 69–71.

    Article  Google Scholar 

  • Behnke, M. 1980. General resistance to blight of Solanum tuberosum plants regenerated from callus resistant to culture filtrates of Phytophthora infestans. Theor Appl Genet. 56: 151–152.

    Google Scholar 

  • Bieniek, M.E., R.C. Harrell and D.J. Cantliffe. 1995. Enhancement of somatic embryogenesis of Ipomoea batatas in solid cultures and production of mature somatic embryos in liquid cultures for application to a bioreactor production system. Plant Cell Tissue Org. Cult. 41: 1–8.

    Article  Google Scholar 

  • Binding, H., K. Binding and J. Straub. 1970 Selektion in Gewebekulturen mit haploiden Zellen. Naturwissenschaften 3: 138–139.

    Article  Google Scholar 

  • Briggs, R.W. and M.J. Constantin. 1977. Radiation types and radiation sources. In: Manual on Mutation Breeding, 2nd edn, pp. 7–20. Vienna: International Atomic Energy Agency, Tech. Rep. Ser. No. 119.

    Google Scholar 

  • Broertjes, C. 1977. Mutagen treatment and handling of treated material. In: Manual on Mutation Breeding, 2nd edn, pp. 160–168. Vienna: International Atomic Energy Agency, Tech. Rep. Ser. No. 119.

    Google Scholar 

  • Brunner, H. and H. Keppl. 1991. Radiation induced apple mutants of improved commercial value. In: Proceedings, ‘Plant Mutation Breeding for Crop Improvement’ vol. 1, pp. 547–552. International Symposium, IAEA and Food Agriculture Organization of the United Nations, IAEA SM- 311, Vienna.

    Google Scholar 

  • Carlson, P.S. 1973. Methionine sulfoxamine-resistant mutants of tobacco. Science. 180: 1366–1368.

    Article  PubMed  CAS  Google Scholar 

  • Cassells, A.C., C. Walsh and C. Periappuram. 1993. Diplontic selection as positive factor in determining the fitness of mutants of Dianthus ‘Mystere’ derived from x-irradiation of nodes in in vitro cultures. Euphytica. 70: 167–174.

    Article  Google Scholar 

  • Chaleff, R.S. 1983. Isolation of agronomically useful mutants from plant cell cultures. Science. 219: 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Chaleff, R.S. and T.B. Ray. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science. 223: 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Cheikh, R., A. Zaid, and M. Ait-Chitt. 1989. Travaux de récherches conduits sur l’embryogenese somatique chez le palmier dattier (Phoenix dactylifera L.). pp. 59–69. In Compte-Rendue Du Deuxieme Seminaire Maghrebin sur la Multiplication Rapide du Palmier Dattier par les Techniques de Culture In Vitro. FAO/UNDP/RAB/88/024. Marrakech: INRA.

    Google Scholar 

  • Dale, P.J. 1995. R&D regulation and field trialling of transgenic crops. TIBTECH 13: 398–403.

    Article  CAS  Google Scholar 

  • Dix, P.J. and H.E. Street. 1975. Sodium chloride-resistant cultured cell lines from Nicotiana sylvestris and Capsicum annuum. Plant Sci Lett. 5: 231–237.

    Article  Google Scholar 

  • Dörffling, K., H. Dörffling and G. Lesselich. 1993. In vitro-selection and regeneration of hydroxyproline-resistant lines of winter wheat with increased proline content and increased frost tolerance. J Plant Physiol. 142: 222–225.

    Article  Google Scholar 

  • Drew, R.A. 1992. Improved techniques for in vitro propagation and germplasm storage of papaya. HortScience. 27: 1122–1124.

    Google Scholar 

  • Duncan, R.R., R.M. Waskom and M.W. Nabors. 1995. In vitro screening and field evaluation of tissue culture regenerated sorghum (Sorghum bicolor (L.) Moench) for soil stress tolerance: recovery of improved genotypes. Euphytica. 85: 373–380.

    Article  Google Scholar 

  • Evans, D.A. and W.R. Sharp. 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science. 221: 949–951.

    Article  PubMed  CAS  Google Scholar 

  • Garcia de, E. and S. Martinez. 1995. Somatic embryogenesis in Solanum tuberosum L. cv. Desiree from stem nodal sections. J Plant Physiol. 145: 526–530.

    Article  Google Scholar 

  • Gegenbach, B.G., C.E. Green and C.M. Donovan. 1977. Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA. 74: 5113–5117.

    Article  Google Scholar 

  • Grover, A., A. Pareek and S.C. Maheshwari. 1993. Molecular approaches for genetically engineering plants tolerant to salt stress. Proc Indian Natl Sci Acad. B59: 113–127.

    CAS  Google Scholar 

  • Heinz, D.J., M. Krishnamurthi, L.G. Nickell and A.M. Maretzki. 1977. Cell tissue and organ culture in sugarcane improvement. Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture, pp. 3–17 (ed. Y.P.S. Bajaj). Berlin: Springer.

    Google Scholar 

  • Hensz, R.A. 1991. Mutation breeding of grapefruit (Citrus paradisi Macf.). In: Plant Mutation Breeding for Crop Improvement, vol. 1. pp. 533–536. Vienna: IAEA.

    Google Scholar 

  • Herbert-Soule, D., J.R. Rikkert and B.I. Reisch. 1995. Phosphinothricin stimulates somatic embryogenesis in grape (Vitis sp. L.). Plant Cell Rep. 14: 380–384.

    Google Scholar 

  • Heslot, H. 1977. Chemical mutagens. Review of main mutagenic compounds. In: Manual on Mutation Breeding, 2nd edn, pp. 51–58. Vienna: International Atomic Energy Agency, Tech. Rep. Ser. No. 119.

    Google Scholar 

  • Hsia, C.N. and S.S. Korban. 1996. Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tissue Org Cult. 44: 1–6.

    Article  CAS  Google Scholar 

  • Jain, S., H.S. Nainawatee, R.K. Jain and J.B. Chowdhry. 1991. Proline status of genetically stable salttolerant Brassica juncea L. somaclones and their parent cv. Prakash. Plant Cell Rep. 9: 684–687.

    Article  CAS  Google Scholar 

  • Jehan, H., D. Courtois, C. Ehret, K. Lerch and V. Petiard. 1994. Plant regeneration of Iris pallida Lam. and Iris germanica L. via somatic embryogenesis from leaves, apices and young flowers. Plant Cell Rep. 13: 671–675.

    Article  CAS  Google Scholar 

  • Kim, J.W. and W.Y. Soh. 1996. Plant regeneration through somatic embryogenesis from suspension cultures of Allium fistulosum L. Plant Sci. 114: 215–220.

    Article  CAS  Google Scholar 

  • Kirti, P.B., S. Hadi, P.A. Kumar and V.L. Chopra. 1991. Production of sodium chloride-tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. Theor. Appl. Genet. 83: 233–237.

    Article  Google Scholar 

  • Kobyashi, R.S., J.C. Bouwkamp and S.L. Sindan. 1994, Interspecific hybrids from cross incompatible relatives of sweet potato. Euphytica. 80: 159–164.

    Article  Google Scholar 

  • Kreuger, M., E. Postma, Y. Brouwer and G. van Holst. 1995. Somatic embryogenesis of Cyclamen persicum in liquid medium. Physiol Planta. 94: 605–612.

    Article  CAS  Google Scholar 

  • Krikorian, A.D. and S.S. Cronauer. 1984. Banana. Handbook of Plant Cell Culture, vol. 2: Crop Species, pp. 327–348 (eds W.R. Sharp, D.A. Evans, P. Ammirato and Y. Yamada). New York: Macmillan.

    Google Scholar 

  • Lapade, A.G., A.M.S. Veluz and I.S. Santos. 1995. Genetic improvement of the Queen variety of pineapple through induced mutation and in vitro culture techniques. In: pp. 684–687. Proceedings, ‘Induced Mutations and Molecular Techniques for Crop Improvement’, International Symposium, IAEA and Food Agriculture Organization of the United Nations, IAEA, Vienna.

    Google Scholar 

  • Lee, S.P. and H.H. Chen. 1993. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension cultures. Plant Physiol. 101: 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  • Love, S.L., T.P. Baker, A. Thompson-Johns and B.K. Werner. 1996. Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breed. 115: 119–122.

    Article  CAS  Google Scholar 

  • Mak, C., Y.W. Ho, Y.P. Tan and R. Ibrahim. 1996. Novaria – a new banana mutant induced by gamma irradiation. Infomusa. 5: 35–36.

    Google Scholar 

  • Maliga, P. 1984. Isolation and characterization of mutants in plant cell cultures. Annu Rev Plant Physiol. 35: 519–552.

    Article  CAS  Google Scholar 

  • Maluszynski, M., B. Sigurbjornsson, E. Amano, L. Sitch and O. Kamra. 1992. Mutant varieties-data bank, FAO/IAEA database. Part II. Mutat Breed Newsl. 39: 14–17.

    Google Scholar 

  • Maluszynski, M., B.S. Ahloowalia and B. Sigurbjornsson. 1995. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica. 85: 303–315.

    Article  Google Scholar 

  • Maribona, R.H. 1994. Department of BioPlantas, National Center for Scientific Research (CNIC), Havana, Cuba (personal communication).

    Google Scholar 

  • Melchers, G. and L. Bergmann. 1959. Untersuchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber Dtsch Bot Ges. 78: 21–29.

    Google Scholar 

  • Miller, O.K. and K.W. Hughes. 1980. Selection of paraquat-resistant variants of tobacco from cell cultures. In Vitro 16: 1085–1091.

    Article  Google Scholar 

  • Mityko, J., A. Andrasfalvy and M. Fari. 1996. Hungarian pepper cultivar breaks through traditional barriers in breeding practices. Hung Agric Res. 1: 18–22.

    Google Scholar 

  • Muller, A.J. 1983. Genetic analysis of nitrate reductase deficient tobacco plants regenerated from mutant cells. Evidence for duplicate structural genes. Mol Gen Genet. 192: 275–281.

    Article  Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Pl. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nabors, M.W., S.E. Gibbs, C.S. Bernstein and M.E. Meis. 1980. NaCl-tolerant tobacco plants from cultured cells. Z Pflanzen Physiol. 97: 13–17.

    CAS  Google Scholar 

  • Nabors, M.W. 1983. Increasing the salt and drought tolerance of crop plants. In: Current Topics in Plant Biochemistry and Physiology, vol. 2, pp. 165–184 (ed. D.D. Randall). Columbia: University of Missouri Press.

    Google Scholar 

  • Sabapathy, S. and H. Nair. 1995. In vitro propagation of taro with spermine, arginine and ornithine. II. Plantlet regeneration via callus. Plant Cell Rep. 14: 520–524.

    Article  CAS  Google Scholar 

  • Sacristan, M.D. 1982. Resistance to Phoma lingam of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus. Theor Appl Genet. 61: 193–200.

    Google Scholar 

  • Sanada, T., K. Kotobuki, T. Nishida, H. Fujita and F. Ikeda. 1993. A new Japanese cultivar ‘Golden Nijisseike’, resistant mutant to black spot disease of Japanese pear. Jpn J Breed. 43: 455–461.

    Google Scholar 

  • Santos, I., I. Guimaraes and R. Salema. 1994. Somatic embryogenesis and plant regeneration of Nerium oleander. Plant Cell, Tissue Org Cult. 37: 83–86.

    Article  Google Scholar 

  • Schaik Van, C.E., A. Posthuma, M.J. De Jeu and E. Jacobsen. 1996. Plant regeneration through somatic embryogenesis from callus induced on immature embryos of Alstroemeria spp. L. Plant Cell Rep. 15: 377–380.

    Article  Google Scholar 

  • Sears, E.R. 1993. Use of radiation to transfer alien chromosome segments to wheat. Crop Sci. 33: 897–901.

    Article  Google Scholar 

  • Shah, D.M., R.B. Horsch, H.J. Klee, G.M. Kishore, J.A. Winater, N.E. Tumer, C.M. Hironaka, P.R. Sanders, C.S. Gasser, S. Aykent, N.R. Siegel, S.G. Rogers and R.T. Farley. 1986. Engineering herbicide tolerance in transgenic plants. Science. 233: 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Shanchun, C., G. Feng and Z. Jinren. 1991. Studies on the seedless character of citrus induced by irradiation. Mutat Breed Newsl. 37: 8–9.

    Google Scholar 

  • Sharp, F.T. and G.W. Schaeffer. 1993. Distribution of amino acids in bran, embryo and milled endosperm and shifts in storage protein subunits of in vitro-selected and lysine-enhanced mutant and wild type rice. Plant Sci. 90: 145–154.

    Article  Google Scholar 

  • Sonnino, A. and P. Mini. 1993. Somatic embryogenesis in sweet potato. Acta Hort. 336: 239–243.

    Google Scholar 

  • Stefaniak, B. 1994. Somatic embryogenesis and plant regeneration of Gladiolus (Gladiolus hort.). Plant Cell Rep. 13: 386–389.

    Article  CAS  Google Scholar 

  • Susheelamma, B.N., K. Raja Shear, A. Sarkar, M.R. Rao and R.K. Datta. 1996. Genotype and hormonal effects on callus formation and regeneration in mulberry. Euphytica. 90: 25–29.

    CAS  Google Scholar 

  • Tisserat, B. 1984. Date Palm. In: Handbook of Plant Cell Culture, vol. 2: Crop Species, pp. 505–545 (eds W.R., Sharp, D.A. Evans, P. Ammirato and Y. Ynada). New York: Macmillan.

    Google Scholar 

  • Tyagi, A.K., A. Rashid and S.C. Maheshwari. 1981. Sodium chloride resistant cell line from haploid Datura innoxia Mill. A resistance trait carried from cell to plantlet and vice versa in vitro. Protoplasma. 105: 327–332.

    Article  Google Scholar 

  • Vajrabhaya, M., T. Thanapaisal and T. Vajrabhaya. 1989. Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep. 8: 411–414.

    Article  Google Scholar 

  • Winicov, I. 1991. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep. 10: 561–564.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and K. Shinozaki. 1993. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet. 238: 17–25.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ahloowalia, B.S. (1998). In-vitro Techniques and Mutagenesis for the Improvement of Vegetatively Propagated Plants. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Somaclonal Variation and Induced Mutations in Crop Improvement. Current Plant Science and Biotechnology in Agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9125-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4956-8

  • Online ISBN: 978-94-015-9125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics