Skip to main content

New Applications of Simulated Annealing in Crystallographic Refinement

  • Chapter
Direct Methods for Solving Macromolecular Structures

Part of the book series: NATO ASI Series ((ASIC,volume 507))

Abstract

Over the last decade, developments in molecular biology, X-ray diffraction instrumentation, and computational methods have allowed nearly exponential growth of macromolecular structural studies. The analysis of data from these studies generally requires sophisticated computational procedures culminating in refinement and structure validation. These procedures can be formulated as the chemically-constrained or restrained non-linear optimization of a target function, which usually measures the agreement between observed data and data computed from an atomic model. The ultimate goal is to optimize the simultaneous agreement of an atomic model with observed data and with a priori chemical information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Press, W.H., Flannery, B.P., Teukolosky, S. A. and Vetterling, W.T. (eds.) (1986). Numerical Recipes, Cambridge, Cambridge University Press, 498–546.

    Google Scholar 

  2. Kirkpatrick, S., Gelatt, C.D. and Vecchi, Jr., M.P., (1983). Optimization by simulated annealing. Science 220, 671–680.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. BrĂ¼nger, A.T., Kuriyan, J. and Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460.

    Article  ADS  Google Scholar 

  4. BrĂ¼nger, A.T. (1992). The Free R value: a Novel Statistical Quantity for Assessing the Accuracy of Crystal Structures. Nature 355, 472–474.

    Article  ADS  Google Scholar 

  5. Rice, L.M. and BrĂ¼nger, A.T. (1994). Torsion Angle Dynamics: Reduced Variable Conformational Sampling Enhances Crystallographic Structure Refinement. Proteins: Structure, Function, and Genetics 19, 277–290.

    Article  Google Scholar 

  6. Pannu, N.S. and Read, R.J. (1996). Improved Structure Refinement Through Maximum Likelihood. Acta Cryst. A 52, 659–668.

    Article  Google Scholar 

  7. Adams, P.D., Pannu, N.S., Read, R.J. and BrĂ¼nger, A.T. (1997). Cross-validated Maximum Likelihood Enhances Crystallographic Simulated Annealing Refinement. Proc. Natl. Acad. Sci. Usa, submitted.

    Google Scholar 

  8. Kuriyan, J., Osapay, K., Burley, S.K., BrĂ¼nger, A.T., Hendrickson, W.A. and Karplus, M. (1991). Exploration of Disorder in Protein Structures by X-ray Restrained Molecular Dynamics. Proteins 10, 340–358.

    Article  Google Scholar 

  9. Burling, F.T. and BrĂ¼nger, A.T. (1994). Thermal Motion and Conformational Disorder in Protein Crystal Structures: Comparison of Multi-Conformer and Time-Averaging Models. Israel Journal of Chemistry 34, 165–175.

    Google Scholar 

  10. Burling, F.T., Weis, W.I., Flaherty, K.M. and BrĂ¼nger, A.T. (1996). Direct Observation of Protein Solvation and Discrete Disorder With Experimental Crystallographic Phases, Science 271, 72–77.

    Article  ADS  Google Scholar 

  11. Hendrickson, W.A. (1985). Stereochemically restrained refinement of macromolec-ular structures. Meth. Enzymol. 115, 252–270.

    Article  Google Scholar 

  12. Engh, R.A. and Huber, R. (1991). Accurate bond and angle parameters for X-ray structure refinement. Acta Cryst. A 47, 392–400.

    Article  Google Scholar 

  13. Parkinson, G., Vojtechovsky, J., Clowney, L., BrĂ¼nger, A.T. and Berman, H.M. (1996). New Parameters for the Refinement of Nucleic Acid Containing Structures. Acta Cryst. D 52, 57–64.

    Article  Google Scholar 

  14. Allen, F.H., Kennard, O. and Taylor, R. (1983). Systematic Analysis of Structural Data as a Research Technique in Organic Chemistry. Acc. Chem. Res. 16, 146–153.

    Article  Google Scholar 

  15. Dauter, Z., Lamzin, V.S. and Wilson, K.S. (1995). Proteins at atomic resolution. Curr. Opin. Struct. Biol. 5, 784–790.

    Article  Google Scholar 

  16. Sevcik, J., Dauter, Z., Lamzin, V.S. and Wilson, K.S. (1996). Ribonuclease from Streptomyces aureofaciens at atomic resolution, Acta Cryst. D 52, 327–344.

    Article  Google Scholar 

  17. Stec, B., Zhou, R. and Teeter, M.M. (1995). Full-matrix refinement of the protein crambin at 0.83 Å and 130 K. Acta Cryst. D 51, 663–681.

    Article  Google Scholar 

  18. Pearlman, D.A. and Kim, S.-H. (1990). Atomic charges for Dna constituents derived from single-crystal X-ray diffraction data. J. Mol.Biol. 211, 171–187.

    Article  Google Scholar 

  19. Karplus, M. and Petsko, G.A. (1990). Molecular dynamics simulations in biology. Nature 347, 631–639.

    Article  ADS  Google Scholar 

  20. BrĂ¼nger, A.T., Karplus, M. and Petsko, G.A. (1989). Crystallographic Refinement by Simulated Annealing: Application to a 1.5 Ă… Resolution Structure of Crambin. Acta Cryst. A 45, 50–61.

    Article  Google Scholar 

  21. Weis, W.I., BrĂ¼nger, A.T., Skehel, J.J. and Wiley, D.C. (1989). Refinement of the Influenza Virus Haemagglutinin by Simulated Annealing. J. Mol. Biol. 212, 737–761.

    Article  Google Scholar 

  22. BrĂ¼nger, A.T., Krukowski, A. and Erickson, J. (1990). Slow-Cooling Protocols for Crystallographic Refinement by Simulated Annealing. Acta Cryst. A 46, 585–593.

    Article  Google Scholar 

  23. Pujinaga, M., Gros, P. and van Gunsteren, W.F. (1989). Testing the method of crystallographic refinement using molecular dynamics. J. Appl. Cryst. 22, 1–8.

    Article  Google Scholar 

  24. Silva, A.M. and Rossmann, M.G. (1985). The refinement of southern bean mosaic virus in reciprocal space. Acta Cryst. B 41, 147–157.

    Article  Google Scholar 

  25. Read, R.J. (1990). Structure-factor probabilities for related structures. Acta Cryst A 46, 900–912.

    Article  Google Scholar 

  26. Bricogne, G. (1991). A multisolution method of phase determination by combined maximization of entropy and likelihood. Iii. Extension to powder diffraction data. Acta Cryst. A 47, 803–829.

    Article  Google Scholar 

  27. Bricogne, G. (1993). Direct phase determination by entropy maximization and likelihood ranking: status report and perspectives. Acta Cryst. D 49, 37–60.

    Article  Google Scholar 

  28. Kleywegt, G.J. and BrĂ¼nger, A.T. (1996). Cross-validation in crystallography: practice and applications. Structure 4, 897–904.

    Article  Google Scholar 

  29. Sussman, J.L., Holbrook, S.R., Church, G.M. and Kim, S.-H. (1977). Structure-factor least-squares refinement procedure for macromolecular structure using constrained and restrained parameters. Acta Cryst. A 33, 800–804.

    Article  Google Scholar 

  30. Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Cryst. A 27, 436–452.

    Article  Google Scholar 

  31. Pujinaga, M. (1993). Crystallographic Refinement. In: Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinsin, Eds.) Escom Science Publishers B.V., Leiden, pp. 371–381.

    Google Scholar 

  32. Rice, L.M., Shamoo, Y., BrĂ¼nger, A.T., manuscript in preparation.

    Google Scholar 

  33. Arnold, E. and Rossmann, M.G. (1988). The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure. Acta Cryst. A 44, 270–282.

    Article  Google Scholar 

  34. Hendrickson, W.A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation, Science 254, 51–58.

    Article  ADS  Google Scholar 

  35. Laarhoven, P.J.M. and Aarts, E. H. L.(eds.) (1987). Simulated Annealing: Theory and Applications. Dordrecht: D. Reidel Publishing Company, pp. 187.

    Book  MATH  Google Scholar 

  36. Metropolis, N., Rosenbluth, M., Rosenbluth, A. Teller, A. and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.

    Article  ADS  Google Scholar 

  37. Veriet, L. (1967). Computer Experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–105.

    Article  ADS  Google Scholar 

  38. Goldstein, H. (1980). Classical Mechanics 2nd ed., Addison-Wesley Pub. Co., Reading, Massachusetts.

    MATH  Google Scholar 

  39. Abramowitz, M. and Stegun, I. (1968). Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55, Dover Publications, New York, pp. 896.

    Google Scholar 

  40. Bae, D.-S. and Haug, E.J. (1987). A recursive formulation for constrained mechanical system dynamics: Part I. Open loop systems. Mech. Struct, and Mach. 15, 359–382.

    Article  Google Scholar 

  41. Bae, D.-S. and Haug, E.J. (1988). A recursive formulation for constrained mechanical system dynamics: Part Ii. Closed loop systems. Mech. Struct, and Mach. 15, 481–506.

    Google Scholar 

  42. Jain, A., Vaidehi, N. and Rodriguez, G. (1983). A Fast Recursive Algorithm for Molecular Dynamics Simulation. J. Comp. Phys. 106, 258–68.

    ADS  Google Scholar 

  43. Mathiowetz, A.M., Jain, A., Karasawa, N. and Goddard, W.A. (1994). Protein Simulations Using Techniques Suitable for Very Large Systems: The Cell Mulipole Method for Nonbond Interactions and the Newton-Euler Inverse Mass Operator Method for Internal Coordinate Dynamics. Proteins 20, 227–247.

    Article  Google Scholar 

  44. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.

    Article  ADS  Google Scholar 

  45. BrĂ¼nger, A.T. (1988). Crystallographs refinement by simulated annealing: application to a 2.8 Ă… resolution structure of aspartate aminotransferase. J. Mol. Biol. 203, 803–816.

    Article  Google Scholar 

  46. Hoppe, W. (1957). Die Faltmolek—lmethode — eine neue Methode zur Bestimmung der Kristallstruktur bei Ganz oder Teilweise bekannter Molek—lstruktur. Acta Cryst. 10, 750–751.

    Google Scholar 

  47. Rossmann, M.G. and Blow, D.M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. A 15, 24–51.

    Article  Google Scholar 

  48. Pflugrath, J.W., Wiegand, G., Huber, R. and Vertesey, L., (1986). Crystal structure determination, refinement and the molecular model of the alpha-amylase inhibitor Hoe-467A. J. Mol. Biol. 189(2), 383–386.

    Article  Google Scholar 

  49. Gros, P., van Gunsteren, W.F. and Hol, W.G.J. (1990). Inclusion of Thermal Motion in Crystallographic Structures by Restrained Molecular Dynamics. Science 249, 1149–1152

    Article  ADS  Google Scholar 

  50. Kuriyan, J., Petsko, G.A., Levy, R.M. and Karplus, M. (1986). Effect of Anisotropy and Anharmonicity on Protein Crystallographic Refinement. J. Mol. Biol. 190, 227–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

BrĂ¼nger, A.T., Adams, P.D., Rice, L.M. (1998). New Applications of Simulated Annealing in Crystallographic Refinement. In: Fortier, S. (eds) Direct Methods for Solving Macromolecular Structures. NATO ASI Series, vol 507. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9093-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9093-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4994-0

  • Online ISBN: 978-94-015-9093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics