Dynamic Behaviour of Sandwich Structures Used in Air Transport

  • A. Moreno
Conference paper


The “Centre d’Etudes de Gramat (C.E.G.)” is working on the modelling of the behaviour of double walled aeronautical structures submitted to impulsive loading. These structures are made of a composite lining panel, on which the pressure loads apply, and an aluminum alloy skin. The lining panel and the skin are both attached on frames which separate them (figure 1).


Sandwich Structure Sandwich Panel Residual Deformation Membrane Element Aluminum Alloy Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gay, D.: Composite materials, Hermes publishing.Google Scholar
  2. 2.
    Favre, J.P., and Vautrin, A.: CMO/caractérisation expérimentale et modélisation, Comptes rendus des neuvièmes journées nationales sur les composites, AMAC (1994).Google Scholar
  3. 3.
    Allix, O.; Favre, J.P.; and Ladeveze, P.: Essais et identification, Comptes rendus des huitièmes journées nationales sur les composites, AMAC (1992).Google Scholar
  4. 4.
    Miravete, A.: Impact and dynamic, Proceedings of the ninth international conference on composite materials (ICCM/9) Vol.V: Composite behaviour, Univ. Of Zaragoza Woodhead Publ. (1993).Google Scholar
  5. 5.
    Guangyu Shi and Pin Tong: Equivalent transverse shear stiffeness of honeycomb cores, Int. J. Solids Structures Vol. 32 n° 10 pp 1383–1395, Elsevier Science Ltd (1995).zbMATHCrossRefGoogle Scholar
  6. 6.
    Porter, J.H.: Utilizing the crushing under load properties of polypropylene and polyethylene honeycomb to manage crash energy, Journal of materials and manufacturing, Vol. 103, n° section 5, pp. 659–666, SAE Transactions (1994).Google Scholar
  7. 7.
    Burgio, R.B.: Modeling and computer simulation of the dynamic response and failure of composite structures subjected to shock loading, Master’s thesis, Naval postgraduate school Monterey, California (1995).Google Scholar
  8. 8.
    Pilling, M. And Fishwick, S.: The application of progressive damage modelling techniques to the study of delamination effects in composite materials, 6th europeen conference on composite materials, Bordeaux (FR, 1993).Google Scholar
  9. 9.
    Martin, R.H.: Structural damage characterization, Composite materials: Fatigue and fracture — Fifth volume, Atlanta (US), American society for testing and materials (1993).Google Scholar
  10. 10.
    Interfacial bond strength of composite materials, Published search, U.S. Department of Commerce, NTIS (1997).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • A. Moreno
    • 1
  1. 1.Service Durcissement et VulnerabilitéDépartement Structures ImpactsGramatFrance

Personalised recommendations