Skip to main content

Saint-Venant’s Principle for Sandwich Structures

  • Conference paper

Abstract

A review is provided of results on Saint-Venant decay lengths for self-equilibra ted edge loads in symmetric sandwich structures. In linear elasticity, Saint-Venant’s principle is used to show that self-equilibrated loads generate local stress effects that decay away from the loaded end of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self-equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have zero resultant force and moment. When Saint-Venant’s principle is valid, pointwise boundary conditions can be replaced by more tractable resultant conditions. Saint-Venant’s principle is also the fundamental basis for static mechanical tests of material properties. It is shown in the present paper that material inhomogeneity and anisotropy significantly affect the practical application of Saint-Venant’s principle to sandwich structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboudi, J. (1987). Damage in composites-modeling of imperfect bonding. Composites Science and Technology 28, 103–128

    Article  Google Scholar 

  2. Arimitsu, Y., Nishioka, K., and Senda, T. (1995). A study of Saint-Venant’s principle for composite materials by means of internal stress fields. Journal of Applied Mechanics 62, 53–58

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Baxter, S.C. and Horgan, C.O. (1995). End effects for anti-plane shear deformations of sandwich structures. J. of Elasticity 40, 123–164

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, S.C. and Horgan, C.O. (1997). Anti-plane shear deformations of anisotropic sandwich structures: end effects. Int. J. Solids Structures 34, 79–98

    Article  MathSciNet  MATH  Google Scholar 

  5. Benveniste, Y. (1984). On the effect of debonding on the overall behavior of composite materials. Mechanics of Materials 3, 349–358

    Article  Google Scholar 

  6. Carlsson, L.A. and Pipes, R.B. (1987). Experimental Characterization of Advanced Composite Materials. Prentice-Hall, New Jersey.

    Google Scholar 

  7. Choi, I. and Horgan, C.O. (1977). Saint- Venant’s principle and end effects in anisotropic elasticity. Journal of Applied Mechanics 44, 424–430

    Article  ADS  MATH  Google Scholar 

  8. Choi, I. and Horgan, C.O. (1978). Saint-Venant end effects for plane deformation of sandwich strips. Int. J. Solids Structures 14, 187–195

    Article  MATH  Google Scholar 

  9. Crafter, E.C., Heise, R.M., Horgan, C.O., and Simmonds, J.G. (1993). The eigenvalues for a self-equilibrated semi-infinite, anisotropic elastic strip. Journal of Applied Mechanics 60, 276–281

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Devries, F. (1993). Bounds on elastic moduli of unidirectional composites with imperfect bonding. Composites Engineering 3, 349–382

    Article  Google Scholar 

  11. Gibson, R.F.(1994). Principles of Composite Material Mechanics. McGraw-Hill, New York.

    Google Scholar 

  12. Horgan, C.O. (1982). Saint-Venant end effects in composites. Journal of Composite Materials 16, 411–422

    Article  ADS  Google Scholar 

  13. Horgan, C.O. and Knowles, J.K. (1983). Recent developments concerning Saint-Venant’s principle. Advances in Applied Mechanics (ed. J.W. Hutchinson and T.Y. Wu) 23, Academic Press, New York, pp. 179–269

    Google Scholar 

  14. Horgan, C.O. (1989). Recent developments concerning Saint- Venant’s principle: an update. Applied Mechanics Reviews 42, 295–303

    Article  MathSciNet  ADS  Google Scholar 

  15. Horgan, C.O. (1996). Recent developments concerning Saint-Venant’s principle: a second update. Applied Mechanics Reviews 48, S101-S111.

    Article  Google Scholar 

  16. Horgan, C.O. and Simmonds, J.G. (1994). Saint-Venant end effects in composite structures. Composites Engineering 3, 279–286

    Article  Google Scholar 

  17. Horgan, C.O. and Miller, K.L. (1994). Anti-plane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids. Journal of Applied Mechanics 61, 23–29

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Horgan, C.O. (1995). Anti-plane shear deformations in linear and nonlinear solid mechanics. SIAM Review 37, 53–81

    Article  MathSciNet  MATH  Google Scholar 

  19. Miller, K.L. and Horgan, C.O. (1995a). End effects for plane deformations of an elastic anisotropic semi-infinite strip. Journal of Elasticity 38, 261–316

    Article  MathSciNet  MATH  Google Scholar 

  20. Miller, K.L. and Horgan, C.O. (1995b). Saint-Venant end effects for plane deformations of elastic composites. Mechanics of Composite Materials and Structures 2, 203–214

    Article  Google Scholar 

  21. Tullini, N. and Savoia, M. (1997). Decay rate of Saint-Venant end effects for multilayered orthotropic strips. Int. J. Solids Structures (in press)

    Google Scholar 

  22. Tullini, N. Savoia, M. and Horgan C.O. (1997). End effects in multilayered orthotropic strips with imperfect bonding. Mechanics of Materials (in press)

    Google Scholar 

  23. Wijeyewickrema, A.C. and Keer, L.M. (1994). Axial decay of stresses in a layered composite with slipping interfaces. Composites Engineering 4, 895–899

    Article  Google Scholar 

  24. Wijeyewickrema, A.C. (1995). Decay of stresses induced by self-equilibrated end loads in a multilayered composite. Int. J.Solids Structures 32, 515–523

    Article  MATH  Google Scholar 

  25. Wijeyewickrema, A.C., Horgan, C.O. and Dundurs, J. (1996). Further analysis of end effects for plane deformations of sandwich strips. Int. J. Solids Structures 33, 4327–4336

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Horgan, C.O., Baxter, S.C. (1998). Saint-Venant’s Principle for Sandwich Structures. In: Vautrin, A. (eds) Mechanics of Sandwich Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9091-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9091-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5027-4

  • Online ISBN: 978-94-015-9091-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics