Skip to main content

Aminoglycosides and vancomycin

  • Chapter
Book cover Clinical Nephrotoxins

Abstract

Aminoglycoside antibiotics have been an important part of antibacterial drug chemotherapy for almost 50 years. They demonstrate concentration-dependent bactericidal activity against susceptible organisms. The antimicrobial activity of aminoglycosides may be additive or synergistic with penicillin or cephalosporins against infection due to aerobic gram-negative bacilli or aerobic gram-positive cocci. The prevalence of aminoglycoside resistance has remained low towards gentamicin and tobramycin (which are natural compounds) particularly in countries where antibiotic restriction is strictly enforced (The Netherlands or Scandinavia, e.g.). In other countries, resistance has become somewhat of a problem which has been minimized with new, semisynthetic compounds such as amikacin or isopamicin [1]. Of particular interest is the fact that, in contrast to cephalosporins or fluoroquinolones which are used for many of the same indications, emergence of bacterial resistance during therapy is distinctly rare with aminoglycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halstenson CE, Shepard Kelloway J, Affrime MB, Lin CC, Teal MA, Shapiro BE, Awni WM. Isepamicin disposition in subjects with various degrees of renal function. Antimicrob Agents Chemother 1991; 35: 2382–7.

    Article  PubMed  CAS  Google Scholar 

  2. Pittinger CB, Adamson R. Antibiotic blockade of neuromuscular function. Ann Rev Pharmacol 1972; 12: 169–84.

    Article  PubMed  CAS  Google Scholar 

  3. Brummett RE, Fox KE. Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother 1989; 33: 797–800.

    Article  PubMed  CAS  Google Scholar 

  4. Lane AZ, Wright GE, Blair DC. Ototoxicity and nephrotoxicity of amikacin. Am J Med 1977; 62: 911–8.

    Article  PubMed  CAS  Google Scholar 

  5. Noone P. Sisomicin, netilmicin and dibekacin: a review of their antibacterial activity and therapeutic use. Drugs 1984; 27: 548–78.

    Article  PubMed  CAS  Google Scholar 

  6. Bertino JS, Booker LA, Franck PA, Jenkins PL, Franck KR, Natziger AN. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis 1993; 167: 173–9.

    Article  PubMed  Google Scholar 

  7. Appel GB. Aminoglycoside nephrotoxicity. Am J Med 1990; 88(suppl C): 16S-20S.

    Article  Google Scholar 

  8. Smith CR, Baughman KL, Edwards CQ, Rogers JF, Lietman PS. Controlled comparison of amikacin and gentamicin. New Engl J Med 1977; 296: 349–53.

    Article  PubMed  CAS  Google Scholar 

  9. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT. Hospital-acquired renal insufficiency: a prospective study. Am J Med 1983; 74: 243–8.

    Article  PubMed  CAS  Google Scholar 

  10. Trollfors B. Gentamicin-associated changes in renal function reversible during continued treatment. Antimicrob Agents Chemother 1983; 12: 285–7.

    CAS  Google Scholar 

  11. Eisenberg JM, Koffer H, Glick HA, Connell ML, Loss LE, Talbot GH, Shusterman NH, Strom BL. What is the cost of nephrotoxicity associated with aminoglycosides? Ann Intern Med 1987; 107: 900–9.

    Article  PubMed  CAS  Google Scholar 

  12. Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 1984; 100: 352–7.

    Article  PubMed  CAS  Google Scholar 

  13. Beauchamp D, Gourde P, Bergeron MG. Effect of age on the intracortical accumulation kinetics of gentamicin in rats. Antimicrob Agents Chemother 1989; 33(11): 2006–8.

    Article  PubMed  CAS  Google Scholar 

  14. Manian FA, Stone WJ, Alford RH. Adverse antibiotic effects associated with renal insufficiency. Rev Infect Dis 1990; 12(2): 236–49.

    Article  PubMed  CAS  Google Scholar 

  15. Beauchamp D, Gourde P, Thereault G, Bergeron MG. Age-dependent gentamicin experimental nephrotoxicity. J Pharm Exp Ther 1992; 260: 444–9.

    CAS  Google Scholar 

  16. Bennett WM, Parker RA, Elliott WB, Gilbert DN, Houghton DC. Sex: a determinant of susceptibility to gentamicin nephrotoxicity in the rat. J Infect Dis 1982; 145: 370–3.

    Article  PubMed  CAS  Google Scholar 

  17. Teixeira RB, Kelley J, Alpert H, Pardo V, Vaamonde CA. Complete protection from gentamicin-induced acute renal failure in the diabetes mellitus rat. Kidney Int 1982; 21: 600–12.

    Article  PubMed  CAS  Google Scholar 

  18. Elliott WB, Houghton DC, Gilbert DN, Baines-Hunter J, Bennett WM. Experimental gentamicin nephrotoxicity: effect of streptozotocin-induced diabetes. J Pharm Exp Ther 1985; 233: 264–70.

    CAS  Google Scholar 

  19. Bennett WM, Hartnett MN, Gilbert D, Houghton D, Porter GA. Effect of sodium intake on gentamicin nephrotoxicity in the rat. Proc Soc Exp Biol Med 1976; 151: 736–8.

    Article  PubMed  CAS  Google Scholar 

  20. Chiu PJS, Miller GH, Long JF, Waitz JA. Renal uptake and nephrotoxicity of gentamicin during urinary alkalinization in rats. Clin Exp Pharmacol Physiol 1979; 6: 317–26.

    Article  PubMed  CAS  Google Scholar 

  21. Thompson JR, Simonsen R, Spindler MA, Southern PM, Cronin RE. Protective effect of KCI loading in gentamicin nephrotoxicity. Am J Kidney Dis 1990; 15: 583–91.

    PubMed  CAS  Google Scholar 

  22. Adelman RD, Spangler WL, Beasom F, Ishizaki G, Conzelman GM. Furosemide enhancement of experimental gentamicin nephrotoxicity: comparison of functional and morphological changes with activities of urinary enzymes. J Infect Dis 1979; 140: 342–52.

    Article  PubMed  CAS  Google Scholar 

  23. Gamba G, Contreras AM, Cortes J, Nares F, Santiago Y, Espinosa A, Bobadilla J, Sanchez GJ, Lopez G, Valadez A, Pena JC. Hypoalbuminemia as a risk factor for amikacin nephrotoxicity. La Revista de Investigacion Clinica 1990; 42(3): 204–9.

    CAS  Google Scholar 

  24. Luft FC, Bennett WM, Gilbert DN. Experimental aminoglycoside nephrotoxicity: accomplishments and future potential. Rev Infect Dis 1983; 5(suppl 2): S268–93.

    Article  CAS  Google Scholar 

  25. Nanji AA, Denegri JF. Hypomagnesemia associated with gentamicin therapy. Drug Intelligence Clin Pharmacy 1984; 18: 596–8.

    CAS  Google Scholar 

  26. Zaloga GP, Chernow B, Pock A, Wood B, Zaritsky A, Zucker A. Hypomagnesemia is a common complication of aminoglycoside therapy. Surg Gyn Obstet 1984; 158: 561–5.

    CAS  Google Scholar 

  27. Lietman PS. Liver disease, aminoglycoside antibiotics, and renal dysfunction. Hepatology 1988; 4: 966–8.

    Article  Google Scholar 

  28. Desai TK, Tsang TK. Aminoglycoside nephrotoxicity in obstructive jaundice. Am J Med 1988; 85: 47–50.

    Article  PubMed  CAS  Google Scholar 

  29. Moore RD, Smith CR, Lietman PS. Increased risk of renal dysfunction due to interaction of liver disease and aminoglycosides. Am J Med 1986; 80: 1093–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ngeleka M, Beauchamp D, Tardif D, Auclair P, Gourde P, Bergeron MG. Endotoxin increases the nephrotoxic potential of gentamicin and vancomycin plus gentamicin. J Infect Dis 1990; 161: 721–727.

    Article  PubMed  CAS  Google Scholar 

  31. Auclair P, Tardif D, Beauchamp D, Gourde P, Bergeron MG. Prolonged endotoxemia enhances the renal injuries induced by gentamicin in rats. Antimicrob Agents Chemother 1990; 34: 889–95.

    Article  PubMed  CAS  Google Scholar 

  32. Tardif D, Beauchamp D, Bergeron MG. Influence of endotoxin on the intracortical accumulation kinetics of gentamicin in rats. Antimicrob Agents Chemother 1990; 34: 576–80.

    Article  PubMed  CAS  Google Scholar 

  33. Keane WF, Welch R, Gekker G, Peterson PK. Mechanism of Escherichia coli a-hemolysin-induced injury to isolated tubular cells. Am J Pathol 1987; 126: 350–7.

    PubMed  CAS  Google Scholar 

  34. Joly V, Bergeron Y, Bergeron MG, Carbon C. Endotoxin-tobramycin additive toxicity on renal proximal tubular cells in culture. Antimicrob Agents Chemother 1991; 35: 351–7.

    Article  PubMed  CAS  Google Scholar 

  35. Zager RA. A focus of tissue necrosis increases renal susceptibility to gentamicin administration. Kidney Int 1988; 33: 84–90.

    Article  PubMed  CAS  Google Scholar 

  36. Spiegel DM, Shanley PF, Molitoris BA. Mild ischemia predisposes the S3 segment to gentamicin toxicity. Kidney Int 1990; 38: 459–64.

    Article  PubMed  CAS  Google Scholar 

  37. Sawyers CL, Moore RD, Lerner SA, Smith CR. A model for predicting nephrotoxicity in patients treated with aminoglycosides. J Infect Dis 1986; 153: 1062–8.

    Article  PubMed  CAS  Google Scholar 

  38. Garrison MW, Rotschafer JC. Clinical assessment of a published model to predict aminoglycoside-induced nephrotoxicity. Ther Drug Monitoring 1989; 11: 171–5.

    Article  CAS  Google Scholar 

  39. The EORTC International Antimicrobial Therapy Project Group. Three antibiotic regimens in the treatment of infection in febrile granulocytopenic patients with cancer. J Infect Dis 1978; 137: 14–29.

    Article  Google Scholar 

  40. Klastersky J, Hensgens C, Debusscher I. Empiric therapy for cancer patients: comparative study of ticarcillin-tobramycin, ticarcillin-cephalothin, and cephalotin-tobramycin. Antimicrob Agents Chemother 1975; 7: 640–5.

    Article  PubMed  CAS  Google Scholar 

  41. Humes HD. Aminoglycoside nephrotoxicity. Kidney Int 1988; 33: 900–11.

    Article  PubMed  CAS  Google Scholar 

  42. Sabra R, Branch RA. Role of sodium in protection by extended spectrum penicillins against tobramycin-in-duced nephrotoxicity. Antimicrob Agents Chemother 1990; 340: 1020–5.

    Article  Google Scholar 

  43. Hayashi T, Watanabe Y, Kumano K, Kitayama R, Yasuda T, Saikawa I, Katahira J, Kumada T, Shimizu K. Protective effect of piperacillin against nephrotoxicity of cephaloridine and gentamicin in animals. Antimicrob Agents Chemother 1988; 32: 912–8.

    Article  PubMed  CAS  Google Scholar 

  44. Halstenson CE, Wong MO, Herman CS, Heim-Duthoy KL, Teal MA, Affrime MB, Kelloway JH, Keane WF, Awni WM. Effects of concomitant administration of piperacillin on the dispositions of isepamicin and gentamicin in patients with end-stage renal disease. Antimicrob Agents Chemother 1992; 36: 1832–36.

    Article  PubMed  CAS  Google Scholar 

  45. Smith CR, Lipsky JJ, Laskin OL, Hellmann DB, Mellits ED, Langstreth J, Lietman PS. Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin. New Engl J Med 1980; 302: 1106–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gilbert DN. Once daily aminoglycoside therapy. Antimicrob Agents Chemother 1991; 35: 339–405.

    Google Scholar 

  47. Lerner AM, Cone LA, Jansen W, Reyes MP, Blair DC, Wright GE, Lorber RR. Randomized, controlled trial of the comparative efficacy, auditory toxicity, and nephrotoxicity of tobramycin and netilmicin. Lancet 1983; 1123–31.

    Google Scholar 

  48. Wade JC, Smith CR, Petty BG, Lipsky JJ, Conrad G, Ellner J, Lietman PS. Cephalothin plus an aminoglycoside is more nephrotoxic than methicillin plus and aminoglycoside. Lancet 1978; 3: 604–6.

    Article  Google Scholar 

  49. Farber BF, Moellering RC. Retrospective study of the toxicity of preparations of vancomycin from 1974–1981. Antimicrob Agents Chemother 1983; 23: 138–41.

    Article  PubMed  CAS  Google Scholar 

  50. Ryback MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin alone and with an aminoglycoside. J Antimicrob Chemother 1990; 25: 679–87.

    Article  Google Scholar 

  51. Schentag JJ, Jusko WJ. Renal clearance and tissue accumulation of gentamicin. Clin Pharmacol Ther 1977; 22: 364–70.

    PubMed  CAS  Google Scholar 

  52. Hull JH, Sarubbi FA. Gentamicin serum concentrations: pharmacokinetic predictions. Ann Int Med 1976; 85: 183–9.

    Article  PubMed  CAS  Google Scholar 

  53. Reyman MT, Bradac JA, Cobbs CG, Dismukes WE. Correlations of aminoglycoside dosages with serum concentrations during therapy of serious Gram-negative bacillary disease. Antimicrob Agents Chemother 1979; 16: 353–61.

    Article  Google Scholar 

  54. Pastoriza-Mufioz E, Timmerman D, Feldman S, Kaloyanides GJ. Ultrafiltration of gentamicin and netilmicin in vivo. J Pharmacol Exp Ther 1982; 220: 604–8.

    Google Scholar 

  55. Luft FC, Kleit SA. Renal parenchymal accumulation of aminoglycoside antibiotics. J Infect Dis 1974; 130: 656–9.

    Article  PubMed  CAS  Google Scholar 

  56. Fabre J, Rudhart M, Blanchard P, Regamey C. Persistance of sisomicin and gentamicin in renal cortex and medulla compared to other organs and serum of rats. Kidney Int 1976; 10: 444–9.

    Article  PubMed  CAS  Google Scholar 

  57. Edwards CQ, Smith CR, Gaughman KL, Rogers JF, Lietman PS. Concentrations of gentamicin and amikacin in human kidneys. Antimicrob Agents Chemother 1976; 9: 925–7.

    Article  PubMed  CAS  Google Scholar 

  58. De Broe ME, Paulus GJ, Verpooten GA, Roels F, Buyssens N, Wedeen R, Van Hoof F, Tulkens PM. Early effects of gentamicin, tobramycin, and amikacin on the human kidney. Kidney Int 1984; 25: 643–52.

    Article  PubMed  Google Scholar 

  59. Verpooten GA, Giuliano RA, Verbist L, Eestermans G, De Broe ME. Once-daily dosing decreases renal accumulation of gentamicin and netilmicin. Clin Pharmacol Ther 1989; 45: 22–7.

    Article  PubMed  CAS  Google Scholar 

  60. De Broe ME, Verbist L, Verpooten GA. Influence of dosage schedule on renal cortical accumulation of amikacin and tobramycin in man. J Antimicrob Chemother 1991; 27(suppl C): 41–7.

    Article  PubMed  Google Scholar 

  61. Just M, Erdmann G, Habermann E. The renal handling of polybasic drugs: I. Gentamicin and aprotinin in intact animals. Naunyn-Schmiedeberg’s Arch Pharmacol 1977; 300: 57–66.

    Article  CAS  Google Scholar 

  62. Silverblatt FJ, Kuehn C. Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney Int 1979; 15: 335–45.

    Article  PubMed  CAS  Google Scholar 

  63. Vandewalle A, Farman N, Morin JP, Fillastre JP, Hatt PY, Bonvalet JP. Gentamicin incorporation along the nephron: autoradiographic study on isolated tubules. Kidney Int 1981; 19: 529–39.

    Article  PubMed  CAS  Google Scholar 

  64. Wedeen RP, Batuman V, Cheeks C, Marquet E, Sobel H. Transport of gentamicin in rat proximal tubule. Lab Invest 1983; 48: 212–23.

    PubMed  CAS  Google Scholar 

  65. Giuliano RA, Verpooten GA, Verbist L, Wedeen RP, De Broe ME. In vivo uptake kinetics of aminoglycosides in the kidney cortex of rats. J Pharmacol Exp Ther 1986; 236: 470–5.

    PubMed  CAS  Google Scholar 

  66. Verpooten GA. A physiologically based kinetic model of the renal handling of aminoglycosides and its clinical implications [dissertation]. Antwerpen (Belgium): Univ. of Antwerpen, 1987.

    Google Scholar 

  67. Pattyn VM, Verpooten GA, Giuliano RA, Zheng F, De Broe ME. Effect of hyperfiltration, proteinuria, and diabetes mellitus on the uptake kinetics of gentamicin in the kidney cortex of rats. J Pharmacol Exp Ther 1988; 244: 694–8.

    PubMed  CAS  Google Scholar 

  68. De Broe ME. Prevention of aminoglycoside nephrotoxicity. Proc EDTA-ERA 1985; 22: 959–73.

    Google Scholar 

  69. Giuliano RA, Paulus GJ, Verpooten GA, Pattyn VM, Pollet DE, Nouwen EJ, Laurent G, Carlier M-B, Maldague P, Tulkens PM, De Broe ME. Recovery of cortical phospholipidosis and necrosis after acute gentamicin loading in rats. Kidney Int 1984; 26: 838–47.

    Article  PubMed  CAS  Google Scholar 

  70. Aronoff GR, Pottratz ST, Brier ME, Walker NE, Fineberg NS, Giant MD, Luft FC. Aminoglycoside accumulation kinetics in rat renal parenchyma. Antimicrob Agents Chemother 1983; 23: 74–8.

    Article  PubMed  CAS  Google Scholar 

  71. Tulkens PM, Trouet A. The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultered fibroblasts. Biochem Pharmacol 1978; 27: 415–24.

    Article  PubMed  CAS  Google Scholar 

  72. Ramsammy LS, Josepovitz C, Kaloyanides GJ. Gentamicin inhibits agonist stimulation of the phospha-tidylinositol cascade in primary cultures of rabbit proximal tubular cells and in rat renal cortex. J Pharmacol Exp Ther 1988; 247: 989–96.

    PubMed  CAS  Google Scholar 

  73. Bennett WM, Mela Riker LM, Houghton DC, Gilbert DN, Buss WC. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity. Am J Physiol 1988; 255: F265–9.

    Google Scholar 

  74. Weinberg JM. The role of cell calcium overload in nephrotoxic renal tubular cell injury. Am J Kidney Dis 1986; 8: 284–91.

    PubMed  CAS  Google Scholar 

  75. Jones DB, Elliott WC. Gentamicin-induced loss of basolateral surface area of rat proximal convoluted tubules. Lab Invest 1987; 57: 412–20.

    PubMed  CAS  Google Scholar 

  76. Gilbert DN, Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Finkbeiner HC, Lindsley J, Bennett WM. Polyaspartic acid prevents experimental aminoglycoside nephrotoxicity. J Infect Dis 1989; 159: 945–53.

    Article  PubMed  CAS  Google Scholar 

  77. Nouwen EJ, Verstrepen WA, Buyssens N, Zhu M-Q, De Broe ME. Hyperplasia, hypertrophy, and pheno-typic alterations in the distal nephron after acute proximal tubular injury in the rat. Lab Invest 1994; 70: 479–93.

    PubMed  CAS  Google Scholar 

  78. Luft FC, Aronoff GR, Evan AP, Connors BA. The effect of aminoglycosides on glomerular epithelium: a comparative study. Res Comm Chem Pathol Pharmacol 1981; 34: 89–95.

    CAS  Google Scholar 

  79. Tulkens PM. Experimental studies on nephrotoxicity of aminoglycosides at low doses: mechanisms and perspectives. Am J Med 1986; 80 (Suppl 63): 105–14.

    Article  PubMed  CAS  Google Scholar 

  80. Laurent G, Kishore BK, Tulkens PM. Aminoglycoside-induced renal phospholipidosis and nephrotoxicity. Biochem Pharmacol 1990; 40: 2383–92.

    Article  PubMed  CAS  Google Scholar 

  81. Verstrepen WA, Nouwen EJ, Yue XS, De Broe ME. Altered growth factor expression during toxic proximal tubular necrosis and regeneration. Kidney Int 1993; 43: 1267–79.

    Article  PubMed  CAS  Google Scholar 

  82. Morin NJ, Laurent G, Nonclercq D, Toubeau G, Heuson-Stiennon JA, Bergeron MG, Beauchamp D. Epidermal growth factor accelerates renal tissue repair in a model of gentamicin nephrotoxicity in rats. Am J Physiol 1992; 263: F806–11.

    Google Scholar 

  83. Porter GA, Bennett WM, Gilbert DN. Unraveling aminoglycoside nephrotoxicity using animal models. J Clin Pharmacol 1983; 23: 445–52.

    PubMed  CAS  Google Scholar 

  84. Bennett WM, Plamp CE, Gilbert DN, Parker RA, Porter GA. The influence of dose regimen on experimental gentamicin nephrotoxicity: dissociation of peak serum levels from renal failure. J Infect Dis 1979; 140: 576–80.

    Article  PubMed  CAS  Google Scholar 

  85. Tulkens PM. Pharmacokinetic and toxicological evaluation of a once-daily regimen versus conventional schedules of netilmicin and amikacin. J Antimicrob Chemother 1991; 27 (Suppl C): 49–61.

    Article  PubMed  Google Scholar 

  86. Van der Auwera P, Meunier F, Ibrahim S, Kaufman L, Derde MP, Tulkens PM. Pharmacodynamic parameters and toxicity of netilmicin (6 mg/kg/day) given once daily or in three divided doses to cancer patients with urinary tract infection. Antimicrob Agents Chemother 1991; 35: 640–7.

    Article  PubMed  Google Scholar 

  87. ter Braak EW, De Vries PJ, Bouter KP, Van der Vegt SG, Dorrestein GC, Nortier JW, Van Dijk A, Verkooyen RP, Verbrugh HA. Once-daily dosing regimen for aminoglycoside plus β-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus cefriaxone. Am J Med 1990; 89: 58–66.

    Article  PubMed  Google Scholar 

  88. Prins JM, Büller HR, Kuijper EJ, Tange RA, Speelman P. Once versus thrice daily gentamicin in patients with serious infections. Lancet 1993; 341: 335–9.

    Article  PubMed  CAS  Google Scholar 

  89. Langhendries JP, Battisti O, Bertrand JM, Francois A, Darimont J, Ibrahim S, Tulkens PM, Bernard A, Buchet JP, Scalais E. Once-a-day administration of amikacin in neonates: assessment of nephrotoxicity and ototoxicity. Dev Pharmacol Ther 1993; 20: 220–30.

    PubMed  CAS  Google Scholar 

  90. The International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Efficacy and toxicity of single daily doses of amikacin and ceftriaxone versus multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulocytopenia. Ann Intern Med 1993; 119: 584–93.

    Article  Google Scholar 

  91. Dillon KR, Dougherty SH, Casner P, Polly S. Individualized pharmacokinetic versus standard dosing of amikacin: a comparison of therapeutic outcomes. J Antimicrob Chemother 1989; 24: 581–9.

    Article  PubMed  CAS  Google Scholar 

  92. Burton ME, Ash CL, Hill DP, Handy TR, Shepherd MD, Vasko MR. A controlled trial of the cost benefit of computerized bayesian aminoglycoside administration. Clin Pharmacol Ther 1991; 49: 685–94.

    Article  PubMed  CAS  Google Scholar 

  93. Whipple JK, Ausman RK, Franson T, Quebbeman EJ. Effect of individualized pharmacokinetic dosing on patient outcome. Crit Care Med 1991; 19: 1480–5.

    Article  PubMed  CAS  Google Scholar 

  94. Leehey DJ, Braun BI, Tholl DA, Chung LS, Gross CA, Roback JA, Lentino JR. Can pharmacokinetic dosing decrease nephrotoxicity associated with aminoglycoside therapy? J Am Soc Nephrol 1993; 4: 81–90.

    PubMed  CAS  Google Scholar 

  95. Edwards DJ, Mangione A, Cumbo TJ, Schentag JJ. Predicted tissue accumulation of netilmicin in patients. Antimicrob Agents Chemother 1981; 20: 714–7.

    Article  PubMed  CAS  Google Scholar 

  96. Sande MA, Mandell GL. Vancomycin. In: Goodman LS, Gilman A, editors. The pharmacological basis of therapeutics, 8th Ed, New York: McGraw Hill, 1991: 1138–40.

    Google Scholar 

  97. Cunha BA. Vancomycin. Med Clin North Am 1995; 79: 817–31.

    PubMed  CAS  Google Scholar 

  98. Golper TA, Noonan HM, Elzinga L, Gilbert D, Brummett R, Anderson JL, Bennett WM. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther 1988; 43: 565–70.

    Article  PubMed  CAS  Google Scholar 

  99. Cutler NR, Narang PK, Lesko LJ, Ninos M, Power M. Vancomycin disposition: the importance of age. Clin Pharmacol Ther 1984; 36: 803–10.

    Article  PubMed  CAS  Google Scholar 

  100. Moellering RC, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Int Med 1981; 94: 343–6.

    Article  PubMed  Google Scholar 

  101. Brown DL, Mauro LS. Vancomycin dosing chart for use in patients with renal impairment. Am J Kidney Dis 1988; 11: 15–9.

    PubMed  CAS  Google Scholar 

  102. Magera BE, Arroyo JC, Rosansky SJ, Postic B. Vancomycin pharmacokinetics in patients with peritonitis on peritoneal dialysis. Antimicrob Agents Chemother 1983; 23: 710–4.

    Article  PubMed  CAS  Google Scholar 

  103. Wilhelm MP. Vancomycin. Mayo clin Proc 1991; 66: 1165–70.

    Article  PubMed  CAS  Google Scholar 

  104. Ena J, Dick RW, Jones RN, Wenzel RP. The epidemiology of intravenous vancomycin usage in a university hospital. JAMA 1993; 269: 598–602.

    Article  PubMed  CAS  Google Scholar 

  105. Morris JG, Shay DK, Hebden JN. Enterococci resistant to multiple antimicrobial agents, including vancomycin. Establisment of endemicity in a university medical center. Ann Int Med 1995; 123: 250–9.

    Article  PubMed  CAS  Google Scholar 

  106. Spera RV, Farber BF. Multiply-resistant Enterococcus faecium. The nosocomial pathogen of the 1990s. JAMA 1992; 268: 2563–4.

    Article  PubMed  Google Scholar 

  107. Editorial. Red men should go: vancomycin and histamine release. Lancet 1990; 335: 1006–7.

    Article  Google Scholar 

  108. Goetz MB, Sayers J. Nephrotoxicity of vancomycin and aminoglycoside therapy seperately and in combination. J Antimicrob Chemother 1993; 32: 325–34.

    Article  PubMed  CAS  Google Scholar 

  109. Salama SE, Rotstein C. Prospective assessment of nephrotoxicity with concomitant aminoglycoside and vancomycin therapy. Can J Hosp Pharm 1993; 46: 53–9.

    Google Scholar 

  110. Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Gilbert DN. Vancomycin enhancement of experimental tobramycin nephrotoxicity. Antimicrob Agents Chemother 1986; 30: 20–4.

    Article  PubMed  CAS  Google Scholar 

  111. Chandrasekar PH Cronin SM. Nephrotoxicity in bone marrow recipients receiving aminoglycoside plus cyclosporin or aminoglycoside alone. J Antimicrob Chemother 1991; 27: 845–9.

    Article  PubMed  CAS  Google Scholar 

  112. Kureishi A, Jewesson PJ, Rubinger M, Cole CD, Reece DE, Phillips GL, Smith JA, Chow AW. Double-blind comparison of teicoplanin versus vancomycin in febrile neutropenic patients receiving concomitant tobramycin and piperacillin: effect on cyclosporin A-associ-ated nephrotoxicity. Antimicrob Agents Chemother 1991; 35: 2246–52.

    Article  PubMed  CAS  Google Scholar 

  113. Freeman CD, Quintiliani R, Nightingale CH. Vancomycin therapeutic drug monitoring: is it necessary? Ann Pharmacother 1993; 27: 594–8.

    PubMed  CAS  Google Scholar 

  114. Shea KW, Cuhna BA. Teicoplanin. Med Clin North Am 1995; 79: 833–44.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verpooten, G.A., Tulkens, P.M., Bennett, W.M. (1998). Aminoglycosides and vancomycin. In: De Broe, M.E., Porter, G.A., Bennett, W.M., Verpooten, G.A. (eds) Clinical Nephrotoxins. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9088-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9088-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-9090-7

  • Online ISBN: 978-94-015-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics