Advertisement

Vietoris’s Inequalities and Hypergeometric Series

  • Richard Askey
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 430)

Abstract

The inequalities of Vietoris have been a good source of problems and new results. Some of these are outlined, and a hypergeometric sum suggested by one of the problems is evaluted.

Key words and phrases

Inequalities Hypergeometric series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Agarwal, G. E. Andrews and D. M. Bressoud The Bailey lattice, J. Indian Math. Soc. 57 (1987), 57–73.MathSciNetGoogle Scholar
  2. 2.
    R. Askey Positive Jacobi polynomial sums, Tôhoku Math. J. 24 (1972), 109–119.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Askey Positivity of the Cotes numbers for some Jacobi abscissas, Numer. Math. 19 (1972), 46–48.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Askey, Positive quadrature methods and positive polynomial sums, Approximation Theory V (C. K. Chui, L. L. Schumaker and J. D. Ward, eds.), Academic Press, Orlando, 1986, pp. 1–29.Google Scholar
  5. 5.
    R. Askey and J. Fitch Positivity of the Cotes numbers for some ultraspherical abscissas, SIAM J. Numer. Anal. 5 (1968), 199–201.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    R. Askey and G. Gasper Positive Jacobi sums. II, Amer. J. Math. 98 (1976), 709–737.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    R. Askey and G. Gasper, Inequalities for polynomials, The Bieberbach Conjecture (A. Baernstein II, D. Drasin, P. Duren, and A. Marden, eds.), Proc. Symp. Occasion of Proof, Amer. Math. Soc, Providence, 1986, pp. 7-32.Google Scholar
  8. 8.
    R. Askey and H. Pollard Absolutely monotonic and completely monotonic functions, SIAM J. Math. Anal. 5 (1974), 58–63.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Askey and J. Steinig Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295–307.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    W. N. Bailey, Hypergeometric Series, Cambridge, 1935 [Reprinted by Hafner, New York, 1964].Google Scholar
  11. 11.
    D. M. Bressoud Almost poised basic hypergeometric series, Proc. Indian Acad. Sci. (Math. Sci.) 97 (1987), 61–66.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    D. M. Bressoud and I. E. Goulden Constant term identities extending the q-Dyson theorem, Trans. Amer. Math. Soc. 291 (1985), 203–228.MathSciNetzbMATHGoogle Scholar
  13. 13.
    G. Brown and E. Hewitt A class of positive trigonometric sums, Math. Ann. 268 (1984), 91–122.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    L. Fejér, Sur les fonctions bornées et intégrables, C.R. Acad. Sci. Paris 131 (1900), 984–987 [Reprinted in [18, Vol. I, pp. 37-41] ].Google Scholar
  15. 15.
    L. Fejér, Sur le développement d’une fonction arbitraire suivant les fonctions de Laplace, C.R. Acad. Sci. Paris 146 (1908), 224–227 [Reprinted in [18, Vol. I, pp. 319-322] ].zbMATHGoogle Scholar
  16. 16.
    L. Fejér, Ultrasphärikus polynomok összegéröl, Mat. és Fiz. Lapok 38 (1931), 161–164 [Reprinted in [18, Vol. II, pp. 418-420; German transi. 421-423] ].Google Scholar
  17. 17.
    L. Fejér, Eigenschaften von einigen elementaren trigonomeschen Polynomen, die mit der Flächenmessung auf der Kugel zusammenhängen, Comm. sémin. math, de l’univ. de Lund, tome suppl. dédié à Marcel Riesz, 1952, pp. 62–72 [In [18, Vol. II, pp. 801-810] ].Google Scholar
  18. 18.
    L. Fejér, Gesammelte Arbeiten, I, II (P. Turán, ed.), Birkhäuser Verlag, Basel, 1970.Google Scholar
  19. 19.
    E. Feldheim, with a note by G. Szegö, On the positivity of certain sums of ultraspherical polynomials, J. d’Anal. Math. 11 (1963), 275-284 [Reprinted in G. Szegö, Collected Papers, Vol. 3, Birkhäuser Verlag, Boston, 1982, pp. 821-830].Google Scholar
  20. 20.
    G. Gasper Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. 8 (1977), 423–447.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    T. H. Gronwall Über die Gibbssche Erscheinung und die trigonometrischen Summen sin x+1/2sin 2x+…+1/n, Math. Ann. 72 (1912), 228–243.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D. Jackson Über eine trigonometrische Summe, Rend. Cire. Mat. Palermo 32 (1911), 257–262.zbMATHCrossRefGoogle Scholar
  23. 23.
    G. V. Milovanovič, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore — New Jersey — London — Hong Kong, 1994.Google Scholar
  24. 24.
    D. S. Mitrinović, Analytic Inequalities, Springer Verlag, Berlin — Heidelberg — New York, 1970.zbMATHGoogle Scholar
  25. 25.
    J. Raynal On the definition and properties of generalized 3 — j symbols, J. Math. Phys. 19 (1978), 467–476.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    G. Szegö, Ultrasphaerikus polinomok összegeröl (On the sum of ultraspherical polynomials), Matés Fiz. Lapok 45 (1938), 36–38 [Reprinted in G. Szegö, Collected Papers, Vol. 2, 1982, pp. 700-702].Google Scholar
  27. 27.
    G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc, Providence, R.I., 1975.zbMATHGoogle Scholar
  28. 28.
    L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen, S. B. Öst. Akad. Wiss. 167 (1958), 125–135 [Anzeigen Öst. Akad. Wiss. (1959), 192-193].zbMATHGoogle Scholar
  29. 29.
    J. Wilson, Three-term contiguous relations and some new orthogonal polynomials, Padé and Rational Approximation (E. B. Saffand R. S. Varga, eds.), Academic Press, New York, 1977, pp. 227–232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Richard Askey
    • 1
  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations