Advertisement

Exact Classical Polynomial Inequalities In Hp for 0 ≤ p ≤ ∞

  • Vitalii V. Arestov
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 430)

Abstract

This paper is devoted to the exact Bernstein, Szegő and Zygmund inequalities for trigonometric polynomials (on the real line) and for algebraic polynomials on the unit disk in the complex plane, as well as to some more general inequalities.

Key words and phrases

Polynomial inequalities Norm Best constant Algebraic polynomials Trigonometric polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Arestov On inequalities of S. N. Bernstein for algebraic and trigonometric polynomials, Soviet Math. Dokl. 20 (1979), 600–603.zbMATHGoogle Scholar
  2. 2.
    V. V. Arestov, Integral inequalities for trigonometric polynomials and their derivatives, Izv. AN SSSR Ser. Mat. 45 (1981), 3–22 (Russian) [Engl. Trans.: Math. USSR-Izv. 18 (1982), 1-17].MathSciNetGoogle Scholar
  3. 3.
    V. V. Arestov, Integral inequalities for algebraic polynomials on the unit circle, Mat. Zametki 48 (1990), 7–18. (Russian)MathSciNetzbMATHGoogle Scholar
  4. 4.
    V. V. Arestov, On one Szegö inequality for algebraic polynomials, Trudy Inst. Mat. Mekh. (Ekaterinburg) 2 (1992), 27–33.MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. V. Arestov, The Szegö inequality for derivatives of a conjugate trigonometric polynomial in L o, Math. Notes 56 (1994), 1216–1227.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    S. N. Bernstein Sur Vordre de la mailleure approximation des fonctions continues par des polynômes de degré donné, Mémoires de l’Académie Royale de Belgique (2) 4 (1912), 1–103.Google Scholar
  7. 7.
    V. V. Arestov, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réele, Collection Borel, Paris, 1926.Google Scholar
  8. 8.
    N. G. de Bruijn and T. A. Springer, On the zeros of composition-polynomials, Nederl. Akad. Wetensch. Proc. 50 (1947), 895–903 [= Indag. Math. 9 (1947), 406-414].MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. I. Ivanov, Some inequalities for trigonometric polynomials and their derivatives in different metrics, Mat. Zametki 18 (1975), 489–498. (Russian)MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Marden, The Geometry of the Zeros of a Polynomials in a Complex Variable, Math. Survey, No. 3, Amer. Math. Soc, New York, 1949.Google Scholar
  11. 11.
    G. Polyá and G. Szegö, Problems and Theorems in Analysis, Vols. I and II, Springer Verlag, Berlin, 1976.Google Scholar
  12. 12.
    M. Riesz Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome, Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (1914), 354–368.zbMATHGoogle Scholar
  13. 13.
    E. A. Storozenko, V. G. Krotov and P. Osval’d, Direct and converse theorems of Jackson type in L P spaces, 0 < p < 1, Mat. Sb. (N.S.) 98(140) (1975), 395–415. (Russian)MathSciNetGoogle Scholar
  14. 14.
    G. Szegö Über einen Satz des Herrn Serge Bernstein, Schrift. Königsberg. Gelehrten Gesellschaft. 5 (1928), 59–70.Google Scholar
  15. 15.
    A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, Cambridge, 1965.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Vitalii V. Arestov
    • 1
  1. 1.Ural State UniversityEkaterinburgRussia

Personalised recommendations