Advertisement

Some Inequalities Involving Harmonic Numbers

  • Miomir S. Stanković
  • Bratislav M. Danković
  • Slobodan B. Tričković
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 430)

Abstract

In this paper we consider some inequalities for convex functions and derive sharper lower and upper bounds for harmonic numbers. Using the Hadamard’s integral inequality we get some better estimates. Also, we give a few applications to some functions.

Key words and phrases

Harmonic numbers Hadamard’s inequality Bernoulli numbers Euler constant Euler-Maclaurin formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. F. Sandham, Problem E 819, Amer. Math. Monthly 55 (1948), 317.MathSciNetGoogle Scholar
  2. 2.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vols. I, II, McGraw-Hill, New York, 1953 [Russian Edition: Nauka, Moskow, 1973].Google Scholar
  3. 3.
    M. Karr Summation in finite terms, J. Assoc. Comput. Mach. 28 (1981), 305–350.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms, Wiley-Teubner Series in Computer Science, Stuttgart, 1984.zbMATHGoogle Scholar
  5. 5.
    D. E. Knuth, The Art of Computer Programming, Vols. 1-3, Addison-Wesley, Reading, Mass., 1968.zbMATHGoogle Scholar
  6. 6.
    J. C. Lafon Summation in finite terms, Computing Suppl. 4 (1982), 71–77.CrossRefGoogle Scholar
  7. 7.
    B. Martic, On some inequalities, Mat. Vesnik 12 (27) (1975), 95–97.MathSciNetGoogle Scholar
  8. 8.
    F. Olver, Asymptotic and Special Functions, Academic Press, 1974.Google Scholar
  9. 9.
    G. V. Milovanović, Numerical Analysis, Part I, 3rd Edition, Naučna Knjiga, Belgrade, 1991. (Serbian)Google Scholar
  10. 10.
    G. V. Milovanović and M. S. Stanković The generalization of an inequality for a function and its derivatives, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461 — No. 497 (1974), 253–256.Google Scholar
  11. 11.
    D. S. Mitrinović (with P. M. Vasić), Analytic Inequalities, Springer Verlag, Berlin — Heidelberg — New York, 1970.zbMATHGoogle Scholar
  12. 12.
    J. Riordan, Combinatorial Identities, R. E. Krieger, Huntington, N.Y., 1979.Google Scholar
  13. 13.
    R. Sedgewick The analysis of quicksort programs, Acta Inform. 7 (1977), 327–355.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    D. Slavić On summation of series, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 302 — No. 319 (1970), 53–59.Google Scholar
  15. 15.
    J. Spiess, Mathematische Probleme der Analyse eines Algorithmus, Z. Angew. Math. Mech. 63 (1983), T429–T431.MathSciNetzbMATHGoogle Scholar
  16. 16.
    J. Spiess Some indentities involving harmonic numbers, Math. Comp. 55 (1990), 839–863.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Miomir S. Stanković
    • 1
  • Bratislav M. Danković
    • 2
  • Slobodan B. Tričković
    • 3
  1. 1.Faculty of the Occupational SafetyNišYugoslavia
  2. 2.Department of AutomaticsFaculty of Electronic EngineeringNišYugoslavia
  3. 3.Faculty of Civil EngineeringNišYugoslavia

Personalised recommendations