Complex Polynomials and Maximal Ranges: Background and Applications

  • Vladimir V. Andrievskii
  • Stephan Ruscheweyh
Part of the Mathematics and Its Applications book series (MAIA, volume 430)


This survey is dedicated to the discussion of the various aspects of the notion of maximal polynomial ranges. These are the unions of ranges of polynomials restricted by a geometrical condition. The theory of maximal ranges in essentially constructive and permits in many cases the identification of extremal functions. It thereby leads to a unified approach to many old and new inequalities for polynomials. We also discuss the relation of this concept to the approximation of conformai maps in the unit disk by univalent polynomials.

Key words and phrases

Maximal ranges Complex polynomials Univalent polynomials Conformai mappings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, N.J., 1966.zbMATHGoogle Scholar
  2. 2.
    V. Andrievskii Approximation of harmonic functions in compact sets in ℂ, Ukrain. Mat. Zh. 45 (1993), 1467–1475.MathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Andrievskii and St. Ruscheweyh Maximal polynomial subordination to univalent functions in the unit disk, Constr. Approx. 10 (1994), 131–144.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    V. Andrievskii and St. Ruscheweyh, The maximal range problem for a bounded domain (to appear).Google Scholar
  5. 5.
    A. Córdova and St. Ruscheweyh On maximal ranges of polynomial spaces in the unit disk, Constr. Approx. 5 (1989), 309–328.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Córdova and St. Ruscheweyh On maximal polynomial ranges in circular domains, Complex Variables Theory Appl. 10 (1988), 295–309.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Córdova and St. Ruscheweyh On the maximal range problèm for slit domains, Proc. of a Conference, Valparaiso, 1989, Lect. Notes Math. 1435, Springer, Berlin — Heidelberg — New York, 1990, pp. 33-44.Google Scholar
  8. 8.
    A. Córdova and St. Ruscheweyh Subordination of polynomials, Rocky Mountain J. Math. 21 (1991), 159–170.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    ——, On the univalence of the extremal polynomials in the maximal range problèm (to appear).Google Scholar
  10. 10.
    V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials, Nauka, Moscow, 1977. (Russian)Google Scholar
  11. 11.
    E. Egerváry Abbildungseigenschaften der arithmetischen Mittel der geometrischen Reihe, Math. Z. 42 (1937), 221–230.MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. W. Gehring, Characteristic Properties of Quasidisks, Les Presses de l’Université de Montréal, 1982.Google Scholar
  13. 13.
    R. Greiner, Zur Güte der Approximation Schlichter Abbildungen durch Maximal Subordinierende Polynomfolgen, Diplomarbeit, Würzburg, 1993.Google Scholar
  14. 14.
    R. Greiner and St. Ruscheweyh, On the approximation of univalent functions by subordinate polynomials in the unit disk, Approximation and Computation (R.V.M. Zahar, ed.), ISNM 119, Birkhäuser, Boston, 1994, pp. 261-271.Google Scholar
  15. 15.
    C. Günther, St. Ruscheweyh, and L. Salinas, New maximal ranges (to appear).Google Scholar
  16. 16.
    F. Holland Some extremum problems for polynomials with positive real part, Bull. London Math. Soc. 5 (1973), 54–58.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    M. Lachance, E. B. Saff and R. S. Varga Inequalities for polynomials with a prescribed zero, Math. Z. 168 (1979), 105–116.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    M. Lavrentiev Sur la continuité des fonctions univalentes, C.R. Acad. Sci. USSR 4 (1936), 215–217.Google Scholar
  19. 19.
    J. Lewis Applications of a convolution theorem to Jacobi polynomials, SIAM J. Math. Anal. 10 (1979), 1110–1120.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    O. Martio and J. Sarvas Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn., Ser. A I Math. 4 (1978), 383–401.MathSciNetGoogle Scholar
  21. 21.
    G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer, New York, 1967.zbMATHCrossRefGoogle Scholar
  22. 22.
    H. P. Mulholland On two extremal problems for polynomials in the unit circle, J. London Math. Soc. 31 (1956), 191–199.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chr. Pommerenke, Boundary Bevaviour of Conformai Maps, Springer, New York, 1992.CrossRefGoogle Scholar
  24. 24.
    St. Ruscheweyh Geometric properties of Cesàro means, Resultate Math. 22 (1992), 739–748.MathSciNetzbMATHGoogle Scholar
  25. 25.
    St. Ruscheweyh and R. S. Varga On the minimum moduli of normalized polynomials with two prescribed values, Constr. Approx. 2 (1986), 349–369.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    St. Ruscheweyh and K.J. Wirths On an extremal problem for bounded polynomials, Approx. Theory Appl. 1 (1985), 115–125.MathSciNetzbMATHGoogle Scholar
  27. 27.
    S. Smale The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4 (1981), 1–36.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    T. J. Suifridge On univalent polynomials, J. London Math. Soc. 44 (1969), 496–504.MathSciNetCrossRefGoogle Scholar
  29. 29.
    T. J. Suifridge, Starlike functions as limits of polynomials, Advances in Complex Function Theory (Maryland, 1973/1974), Lect. Notes Math. 505, Springer, Berlin — Heidelberg — New York, 1976, pp. 164-203.Google Scholar
  30. 30.
    G. Szegö On conjugate trigonometric polynomials, Amer. J. Math. 65 (1943), 532–536.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Vladimir V. Andrievskii
    • 1
  • Stephan Ruscheweyh
    • 2
  1. 1.Institute for Applied Mathematics and Mechanics of the National Ukrainian Academy of SciencesDonetskUkraine
  2. 2.Mathematisches InstitutUniversität WürzburgWürzburgGermany

Personalised recommendations