On the Local Approximation by Quasi-Polynomials

  • Yu. Kryakin
Part of the Mathematics and Its Applications book series (MAIA, volume 430)


A new proof of the multidimensional analogue of Whitney theorem is given. Some new estimates of Whitney constants are also obtained.

Key words and phrases

Interpolation polynomials Whitney’s constants Quasi-polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Binev O(n) bounds of Whitney constants, C.R. Acad. Bulgare Sci. 38 (1985), 1315–1317.MathSciNetGoogle Scholar
  2. 2.
    Ju. A. Brudnyi, On a theorem of local best approximations, Kazan. Gos. Univ. Ucen. Zap. 124 (1964), 43–49. (Russian)MathSciNetGoogle Scholar
  3. 3.
    Ju. A. Brudnyi, Approximation of functions of n variables by quasi-polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 564–583. (Russian)MathSciNetGoogle Scholar
  4. 4.
    ——, The Whitney Constants, Baku, 1989, pp. 24. (Russian)Google Scholar
  5. 5.
    K. Ivanov and M. Takev, O(n ln(n)) bounds of constants of H. Whitney, C.R. Acad. Bulgare Sci. 38 (1985), 1129–1131.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Yu. V. Kryakin, Whitney constants, Mat. Zametki 46 (1989), 155–157. (Russian)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Yu. V. Kryakin, On the theorem of H. Whitney in spaces L p, 1≤p ≤ ∞, Math. Balkanica (N.S.) 4 (1990), 258–271.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Yu. V. Kryakin, Exact constants in the Whitney theorem, Mat. Zametki 54 (1993), 34–51. (Russian)MathSciNetGoogle Scholar
  9. 9.
    Yu. V. Kryakin, On a theorem and constants of Whitney, Mat. Sb. (N.S.) 185 (1994), 24–40 (Russian) [English transi. Russian Acad. Sci. Sb. Math. 81 (1995), 281-295].Google Scholar
  10. 10.
    Yu. V. Kryakin, On the local approximation by polynomials and quasi-polynomials, Dokl. RAN (to appear). (Russian)Google Scholar
  11. 11.
    Yu. V. Kryakin and L. G. Kovalenko, Whitney constants in the classes L p, 1≤p ≤ ∞, Izv. Vyssh. Uchebn. Zaved. Mat. 1992,1992 69–77 (Russian) [English transi, in Soviet Math. (Iz. VUZ) 36 (1992)].MathSciNetGoogle Scholar
  12. 12.
    Yu. V. Kryakin and M. D. Takev, Whitney interpolation constants, Ukrain. Mat. Zh. 47 (1995), 1038–1043. (Russian)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bl. Sendov On the constants of H. Whitney, C.R. Acad. Bulgare Sci. 35 (1982), 431–434.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bl. Sendov The constants of H. Whitney are bounded, C.R. Acad. Bulgare Sci. 38 (1985), 1299–1303.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bl. Sendov On the theorem and constants of H. Whitney, Constr. Approx. 3 (1987), 1–11.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bl. Sendov and V. Popov, The Average Moduli of Smoothness, John Wiley & Sons, Inc., New York, 1988.Google Scholar
  17. 17.
    Bl. Sendov and M. D. Takev A theorem of Whitney’s type in2, PLISKA Stud. Math. Bulgar. 11 (1991), 78–85.MathSciNetzbMATHGoogle Scholar
  18. 18.
    E. A. Storozenko, Approximation of functions by splines that are interpolational in the mean, Izv. Vyssh. Uchebn. Zaved. Mat. 1976 no. 12 (1975), 82–95. (Russian)Google Scholar
  19. 19.
    M. D. Takev, A theorem of Whitney type inn, Constructive Theory of Functions (Varna, 1987), Bulgar. Acad. Sci., Sofia, 1988, pp. 441-447.Google Scholar
  20. 20.
    H. Whitney On function with bounded n-th differences, J. Math. Pures Appl. 36 (1957), 67–95.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Yu. Kryakin
    • 1
  1. 1.Odessa State UniversityOdessaUkraine

Personalised recommendations