Advertisement

Error Inequalities for Discrete Hermite and Spline Interpolation

  • Patricia J. Y. Wong
  • Ravi P. Agarwal
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 430)

Abstract

In this paper we shall develop a class of discrete Hermite and spline interpolates in one and two independent variables. Further, we shall offer explicit error bounds in ℓ∞ norm for both cubic and bicubic discrete Hermite and spline interpolates.

Key words and phrases

Discrete Hermite interpolation Discrete spline interpolation Error estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Agarwal, Difference Equations and Inequalities — Theory, Methods, and Applications, Marcel Dekker, New York — Basel — Hong Kong, 1992.zbMATHGoogle Scholar
  2. 2.
    R. P. Agarwal and B. S. Lalli Discrete polynomial interpolation, Green’s functions, maximum principles, error bounds and boundary value problems, Comput. Math. Appl. 25 (1993), 3–39.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Kluwer Academic Publishers, Dordrecht, 1993.zbMATHCrossRefGoogle Scholar
  4. 4.
    R. P. Agarwal and P. J. Y. Wong Explicit error bounds for the derivatives of spline interpolation in L 2 norm, Appl. Anal. 55 (1994), 189–205.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    P. H. Astor and C. S. Duris Discrete L-splines, Numer. Math. 22 (1974), 393–402.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    T. Lyche, Discrete Polynomial Spline Approximation Methods, Lecture Notes Math. 501: Spline Functions, Springer Verlag, Berlin — Heidelberg — New York, 1976.Google Scholar
  7. 7.
    O. L. Mangasarian and L. L. Schumaker Discrete splines via mathematical programming, SIAM J. Control Optim. 9 (1971), 174–183.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    O. L. Mangasarian and L. L. Schumaker Best summation formulae and discrete splines, SIAM J. Numer. Anal. 10 (1973), 448–459.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    L. L. Schumaker, Constructive aspects of discrete polynomial spline functions, Approximation Theory (G. G. Lorentz, ed.), Academic Press, New York, 1973, pp. 469–476.Google Scholar
  10. 10.
    R. A. Usmáni, Applied Linear Algebra, Marcel Dekker, New York, 1987.zbMATHGoogle Scholar
  11. 11.
    P. J. Y. Wong and R. P. Agarwal Explicit error estimates for quintic and biquintic spline interpolation, Comput. Math. Appl. 18 (1989), 701–722.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    P. J. Y. Wong and R. P. Agarwal Quintic spline solutions of Fredholm integral equations of the second kind, Intern. J. Computer Math. 33 (1990), 237–249.zbMATHCrossRefGoogle Scholar
  13. 13.
    P. J. Y. Wong and R. P. Agarwal, Explicit error estimates for quintic and biquintic spline interpolation II, Comput. Math. Appl. 28(7) (1994), 51–69.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    P. J. Y. Wong and R. P. Agarwal, Sharp error bounds for the derivatives of Lidstone — spline interpolation, Comput. Math. Appl. 28(9) (1994), 23–53.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    P. J. Y. Wong and R. P. Agarwal, Sharp error bounds for the derivatives of Lidstone — spline interpolation II, Comput. Math. Appl. 31(3) (1996), 61–90.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Patricia J. Y. Wong
    • 1
  • Ravi P. Agarwal
    • 2
  1. 1.Division of MathematicsNanyang Technological UniversitySingapore
  2. 2.Department of MathematicsNational University of SingaporeSingapore

Personalised recommendations