Advertisement

Properties of Isometries and Approximate Isometries

  • Themistocles M. Rassias
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 430)

Abstract

In the present paper an analysis of quasi-isometric mappings and almost isometries of function algebras is provided. In addition the A. D. Aleksandrov problem of conservative distances is studied and new open problems are discussed.

Key words and phrases

Isometries Approximate isometries Quasi-isometries Strain Function algebras Commutative Banach algebras Gelfand formula Gelfand transform Aleksandrov problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Aleksandrov, Seminar report, Uspehi Mat. Nauk 5 (1950), no. 3 (37), 187.Google Scholar
  2. 2.
    A. D. Aleksandrov, Mappings of families of sets, Soviet Doklady 11 (1970), 116–120; 376-380.zbMATHGoogle Scholar
  3. 3.
    F. S. Beckman and D. A. Quarles On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4 (1953), 810–815.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    W. Benz, Geometrische Transformationen unter Besonderer Berücksichtigung der Lorentztransformationen, BI-Wissenschafts-Verlag, Mannheim — Wien — Zurich, 1992.zbMATHGoogle Scholar
  5. 5.
    W. Benz On a general principle in geometry that leads to functional equations, Aequationes Math. 46 (1993), 3–10.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    W. Benz and H. Berens A contribution to a theorem of Ulam and M azur, Aequationes Math. 34 (1987), 61–63.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    R. Bishop Characterizing motions by unit distance invariance, Math. Mag. 46 (1973), 148–151.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    K. Ciesielski and Th. M. Rassias On the isometry problem for Euclidean and non-Euclidean spaces, Facta Univ. Ser. Math. Inform. 7 (1992), 107–115.MathSciNetzbMATHGoogle Scholar
  9. 9.
    R. J. Fleming and J. E. Jaminson, Isometries in Banach spaces: A survey, Analysis, Geometry and Groups (H. M. Srivastava and Th. M. Rassias, eds.), Hadronic Press Inc., Palm Harbor, Florida, 1993, pp. 52–123.Google Scholar
  10. 10.
    T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969.zbMATHGoogle Scholar
  11. 11.
    K. R. Goodearl, Notes on Real and Complex C-Algebras, Shiva Publishing Ltd., Nantwich, Cheshire, England, 1982.zbMATHGoogle Scholar
  12. 12.
    A. Guc, On Mappings that Preserve a Family of Sets in Hilbert and Hyperbolic Spaces, Candidate’s Dessertation, Novosibirsk, 1973.Google Scholar
  13. 13.
    R. A. Hirschfeld and W. Zelazko On spectral norm Banach algebras, Bull. Acad. Polon. Sci. 16 (1968), 195–199.MathSciNetzbMATHGoogle Scholar
  14. 14.
    K. Jarosz Metric and algebraic perturbations of function algebras, Proc. Edinburgh Math. Soc. 26 (1983), 383–391.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    K. Jarosz, Perturbations of Banach Algebras, Lect. Notes Math. 1120, Springer Verlag, Berlin — New York, 1985.zbMATHGoogle Scholar
  16. 16.
    F. John Rotation and strain, Commun. Pure Appl. Math. 14 (1961), 391–413.zbMATHCrossRefGoogle Scholar
  17. 17.
    F. John On quasi-isometric mappings I, Commun. Pure Appl. Math. 21 (1968), 77–110.zbMATHCrossRefGoogle Scholar
  18. 18.
    A. V. Kuz’minyh On a characteristic property of isometric mappings, Soviet Math. Dokl. 17 (1976), 43–45.Google Scholar
  19. 19.
    J. Lester On distance preserving transformations of lines in Euclidean three space, Aequationes Math. 28 (1985), 69–72.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    G. Lovblom Isometries and almost isometries between spaces of continuous functions, Israel J. Math. 56 (1986), 143–159.MathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Mielnik Phenomenon of mobility in non-linear theories, Commun. Math. Phys. 101 (1985), 323–339.MathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Mielnik and Th. M. Rassias On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc. 116 (1992), 1115–1118.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    P. S. Modenov and A. S. Parkhomenko, Geometric Transformations Vol. 1, Academic Press, New York — London, 1965.zbMATHGoogle Scholar
  24. 24.
    M. Nagasawa Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kodai Math. Sem. Rep. 11 (1959), 182–188.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    H. Rademacher Über partielle und total Differenzbarkeit von Funktionen mehrer Variabein und über die Transformation von Doppelintegralen, Math. Ann. 79 (1919), 340–359.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Th. M. Rassias and P. Šemrl On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), 919–925.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Th. M. Rassias and C. S. Sharma Properties of isometries, J. Natural Geometry 3 (1993), 1–38.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Th. M. Rassias, Is a distance one preserving mapping between metric spaces always an isometry?, Amer. Math. Monthly 90 (1983), 200.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Th. M. Rassias, Some remarks on isometric mappings, Facta Univ. Ser. Math. Inform. 2 (1987), 49–52.zbMATHGoogle Scholar
  30. 30.
    Th. M. Rassias, On the stability of mappings, Rend, del Sem. Mat. Fis. Milano 58 (1988), 91–99.zbMATHCrossRefGoogle Scholar
  31. 31.
    Th. M. Rassias, The stability of linear mappings and some problems on isometrics, Proc. Intern. Conf. Math. Analysis and Its Applications, 1985, Pergamon Press, Oxford, 1988, pp. 175–184.Google Scholar
  32. 32.
    Th. M. Rassias, Mappings that preserve unit distance, Indian J. Math. 32 (1990), 275–278.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Th. M. Rassias, Problems and Remarks, Aequationes Math. 39 (1990), 304 and 320–321.Google Scholar
  34. 34.
    R. Rochberg Almost isometries of Banach spaces and moduli of planar domains, Pacific J. Math. 49 (1973), 455–466.MathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Rochberg Deformations of uniform algebras, Proc. London Math. Soc. 39 (1979), 93–118.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Inc., Publishers, Tarry-town-on-Hudson, New York and Belmont, California, 1971.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Themistocles M. Rassias
    • 1
  1. 1.Department of Mathematics Zagrafou CampusNational Technical University of AthensAthensGreece

Personalised recommendations